
LECTURE 1

Statistical physics and beyond.

Motivation, targets and examples.



§ WHAT IS METASTABILITY?

Metastability is the phenomenon where a system, under

the influence of a stochastic dynamics, undergoes slow

transitions between different phases. It is observed in a

variety of physical, chemical and biological settings.

The challenge is to propose mathematical models and
to explain the experimentally observed universality.

MONOGRAPHS:

Olivieri, Vares 2005

Bovier, den Hollander 2015

1



Fast transitions within phases.

Slow transitions between phases. 2



§ METASTABILITY IN STATISTICAL PHYSICS

Within the narrower perspective of statistical physics, the

phenomenon of metastability is a dynamical manifestation

of a first-order phase transition. A well-known example is

condensation:

When a vapour is cooled down slowly, it persists
for a long time in a metastable vapour state,
before transiting to a stable liquid state under
the influence of random fluctuations.

The crossover occurs after the system manages to create

a critical droplet of liquid inside the vapour, which once

present grows and invades the whole system.

While in the metastable vapour state, the system makes
many unsuccessful attempts to form a critical droplet. 3
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metastable crossover: super-saturated vapour
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metastable crossover: super-cooled water
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metastable crossover: snow avalanche
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Statistical physics has been very successful in describing
discrete particle systems. Over the years a broad and deep
understanding of critical phenomena has emerged:

spin-flip systems
particle-hop systems
cellular automata
· · ·

Much less is known for continuous particle systems, which
are very hard to analyse. In fact, a rigorous proof of the
presence of a phase transition has so far been achieved for
very few models only.
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§ HISTORICAL PERSPECTIVE

Early work on metastability was done by van ’t Hoff and

Arrhenius in the 1880s, to develop a theory for chemical

reaction rates. Mathematically, metastability took off with

the work of Kramers in the 1940s.

Since then, various approaches to metastability have been

developed, with different pros and cons.

Lebowitz, Penrose 1960–1970 van der Waals
Freidlin, Wentzell 1960–1970 SDE
Cassandro, Galves, Olivieri, Vares 1980–1985 path LDP
Davies 1980–1985 spectra 9



§ POTENTIAL-THEORETIC APPROACH

TO METASTABILITY

Bovier, Eckhoff, Gayrard, Klein 2000

Bovier, den Hollander 2015

With the help of potential theory, the problem of how to

understand metastability of Markov processes translates

into the study of capacities in electric networks.

Dictionary:

state −→ vertex
transition −→ edge
rate −→ conductance
hitting time −→ effective resistance 10



§ DIFFERENT APPROACHES TO METASTABILITY

I Pathwise approach

The pathwise approach to metastability was initiated in the
late 1960’s and early 1970’s by Freidlin and Wentzell. They
introduced the theory of large deviations on path space
to analyse the long-term behaviour of dynamical systems
under the influence of weak random perturbations.

The idea that metastable behaviour is controlled by large deviations
of the random processes driving the dynamics has permeated most
of the mathematical literature on the subject since.

M. Freidlin, A. Wentzell,

Random Perturbations of Dynamical Systems 1984
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The application of these ideas in statistical physics was

pioneered in the early 1980’s by Cassandro, Galves, Olivieri

and Vares. They realised that the theory put forward by

Freidlin and Wentzell could be applied to study metastable

behaviour of interacting particle systems.

Cassandro, Galves, Olivieri and Vares 1984

This paper in turn led to a flurry of results for a variety of

Markovian lattice models, summarised in:

E. Olivieri and M.E. Vares,

Large Deviations and Metastability 2005

This monograph describes the cross-fertilisation between
statistical physics, large deviation theory and the study of
metastable phenomena.
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• The advantage of the pathwise approach is that it gives

very detailed information on the metastable behaviour of

the system. By identifying the most likely path between

metastable states,

typically the minimiser of some action integral
representing the rate function on path space,

information is obtained on what the system does before

and after the crossover, i.e., the tube of typical trajectories.

•The drawback of the pathwise approach is that it is in

general hard to identify the rate function, especially for

systems with a spatial interaction, for which the dynamics

is non-local. Consequently, the pathwise approach typically

leads to relatively crude results on the crossover time.
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I Spectral approach

In the early 1980’s, Davies proposed an axiomatic approach
to metastability based on spectral properties of generators
of reversible Markov processes. He showed that metastable
behaviour arises when the spectrum of the generator of
the Markov process consists of a cluster of very small real
eigenvalues, separated by a comparatively wide gap from
the rest of the spectrum.

The associated eigenfunctions allow for a decomposition of the
state space into metastable sets. The motion of the Markov
process between these sets is slow, with time-scales that are
given by the inverses of the corresponding eigenvalues.

Davies 1982–1983
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In the late 1990’s the above ideas were developed further

by Gaveau and Schulman and Gaveau and Moreau.

While the spectral approach to metastability certainly is
conceptually nice and natural, it is typically very difficult
to carry through in detail mathematically.

Gaveau and Schulman 1998

Gaveau and Moreau 2000
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I Computational approach

There is interest in quantitative numerical computations

for specific systems that exhibit metastable phenomena.

Since metastability is driven by rare events and involves

very long time-scales, doing a simulation is challenging and

requires highly sophisticated techniques.

Some of the methods developed for the computational approach
have links to the spectral approach. The so-called transition path
theory relies on numerical methods to compute harmonic functions.

Ren and Vanden-Eijnden 2002

E and Vanden-Eijnden 2006

Metzner, Schütte and Vanden-Eijnden 2008
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I Potential-theoretic approach

The potential-theoretic approach to metastability initiated
in 2001 with the work of Bovier, Eckhoff, Gayrard and
Klein.

Instead of identifying the most likely paths that realise
a metastable crossover and estimating their probabilities,
this work

interprets the metastability phenomenon as a sequence of visits
of the path to different metastable sets, and focuses on a precise
analysis of the respective hitting probabilities and hitting times of
these sets with the help of potential theory.

Put differently, the problem of understanding metastable
behaviour of Markov processes is translated into the study
of equilibrium potentials and capacities of some associated
electric networks. 17



Dictionary:

state −→ vertex
transition −→ edge
rate −→ conductance
hitting time −→ effective resistance
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• The configurations of the system are represented by the
vertices of the network and the transitions between pairs of
configurations as the edges of the network. The transition
probabilities are represented by the conductances of the
associated edges.

• The hitting probabilities of a set of configurations as a
function of the starting configuration can be expressed in
terms of the equilibrium potential on the network when the
potential is set to 1 on the vertices of the target set and
to 0 on the starting vertex.

• The average hitting time of the set can be expressed in
terms of the equilibrium potential and capacity associated
with the target set and the starting vertex. For metastable
sets it turns out that the average hitting time is essentially
the inverse of the capacity.
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1. A key observation in the potential-theoretic approach

is that capacities can be estimated by exploiting powerful

variational principles. In fact, dual variational principles

are available that express the capacity as a supremum over

potentials and as an infimum over flows.

This opens up the possibility to derive sharp lower bounds and upper
bounds on the capacity via a judicious choice of test functions.

In fact, with the proper physical insight, test functions

can be found for which the lower bounds and the upper

bounds are asymptotically equivalent, in some appropriate

limit corresponding to a metastable regime.
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2. Another key observation is that the relevant equilibrium

potentials can in turn be bounded from above and below

by capacities with the help of renewal equations. This is

crucial, as it avoids the formidable problem of solving the

boundary value problems through which the equilibrium

potentials are defined.

Consequently, estimates of the average crossover time can
be derived that are much sharper than those obtained via the
pathwise approach.

Capacities are expressed with the help of Dirichlet forms,

which have the dimension of the configuration space. It

turns out that the high-dimensional variational principles

for the capacity often can be reduced to low-dimensional

variational principles when the system is metastable.
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The dimensional reduction comes from the fact that typical
metastable crossovers occur near saddles connecting metastable
sets of configurations. The equilibrium potential is very close to
1 or to 0 away from these saddles, so that only the configurations
close to the saddles are relevant.

3. The success of the potential-theoretic approach rest
on the fact that it applies to reversible Markov processes.
While variational characterisations of capacities are known
also for non-reversible Markov processes, these are far more
complicated and far more difficult to use.

A. Bovier and F. den Hollander,

Metastability: A Potential-Theoretic Approach, 2015
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LITERATURE:

Chapter 1 of Bovier and den Hollander 2015, and references therein.
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