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1 Exercise: Key formula linking metastability and potential
theory

In this exercise you will prove a key formula for the potential-theoretic approach to metastability,
namely, the link between the mean metastable crossover time and the capacity. This formula was first
exploited in Bovier, Eckhoff, Gayrard and Klein [1].

1.1 Notation and potential theory

This section collects key tools from the potential-theoretic approach to metastability, which was intro-
duced in the first lecture (see slides Introduction). For a more complete background, see Bovier and
den Hollander [2, Chapters 7–8].

Consider a reversible discrete-time Markov process {σt}t≥0 on a countable state space S, with
generator L and equilibrium measure µ. We denote by Pσ the law of the process conditioned on
σ0 = σ.

Definition 1.1 (Capacity). The capacity between two non-empty disjoint subsets A,B ⊂ S is defined
as

cap(A,B) =
∑
σ∈A

µ(σ)eAB(σ), (1.1)

where eAB is called the equilibrium measure defined as

eAB(σ) = −(LhAB)(σ), ∀σ ∈ A. (1.2)

The function hAB is the harmonic function and is the solution of the so-called Dirichlet problem:

(−LhAB)(σ) = 0, σ ∈ S \ (A ∪B),

hAB(σ) = 1, σ ∈ A,
hAB(σ) = 0, σ ∈ B.

(1.3)

A fundamental relation that links Markov processes theory with potential theory is the following
probabilistic interpretation of the harmonic function and the equilibrium measure

Pσ(τA < τB) =

{
hAB(σ), σ ∈ S \ (A ∪B),
eBA(σ), σ ∈ B, (1.4)

where
τA = inf{t > 0 : σt ∈ A} (1.5)

is the first hitting time of the set A. Consequently, we can rewrite the capacity defined in (1.1) as

cap(A,B) =
∑
σ∈A

µ(σ)Pσ(τB < τA). (1.6)

The importance of capacities lies in the fact that they can be estimated with the help of two dual
variational principles, the Dirichlet principle and the Thomson principle, and that the key formula
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links the capacity to the mean metastable crossover time (see slides Introduction). Before stating
these, we first need to introduce the last-exit biased distribution on A for the transition from A to B,
i.e.,

νA,B(σ) =
µ(σ)Pσ(τB < τA)∑
σ∈A µ(σ)Pσ(τB < τA)

, σ ∈ A. (1.7)

A crucial formula is the following relationship between mean hitting time and capacity,∑
σ∈A

µ(σ)eAB(σ)Eσ[τB ] =
∑
σ′∈S

µ(σ′)hAB(σ′), (1.8)

which, by (1.7), gives

EνAB
[τB ] =

∑
σ∈A

νAB(σ)Eσ[τB ] =
1

cap(A,B)

∑
σ′∈S

µ(σ′)hAB(σ′). (1.9)

In particular, for A = {a},

Ea[τB ] =
1

cap(a,B)

∑
σ′∈S\B

µ(σ′)haB(σ′). (1.10)

1.2 Exercise

(i) Prove formula (1.10).

(ii) Explain in words why in the metastable regime the numerator simplifies to the Gibbs weight of
the metastable state.

1.3 Guidelines for solving the exercise

• Step 1: Recall that the general Dirichlet problem,

(−Lf)(x) = g(x), x ∈ S \B,
f(x) = 0, x ∈ B,

(1.11)

for some set B and some function f , has a unique solution that can be represented in the form

f(x) =
∑

y∈S\B

GB(x, y)g(y), (1.12)

where GB is the Green function. We want to show that the Green function can be computed in
terms of equilibrium potentials and equilibrium measures. Putting together (1.2) and (1.3), we
obtain the following Dirichlet problem:

−(LhAB)(x) = eAB(x), x ∈ S \B,
hAB(x) = 0, σ ∈ B.

(1.13)

Write its solution hAB(x), x ∈ S, in terms of the Green function and the equilibrium measure.

• Step 2: Since the dynamics is assumed to be reversible, we have

µ(x)GB(x, y) = µ(y)GB(y, x), ∀x, y ∈ S. (1.14)

Use this fact and Step 1 to rewrite hAB(x), x ∈ S.

• Step 3: Compute
∑
x∈S µ(x)g(x)hAB(x) using the expression for hAB(x) obtained in Step 2,

where g is any function.

• Step 4: Suppose that f is a solution of (1.11). Again use the expression (1.12) in the previous
equation in order to have f appearing in one side.

• Step 5: Suppose that A = {a} is a singleton. Use the fact that when g ≡ 1, f(x) = Ex[τB ] for
x ∈ S \B and f(x) = 0 for x ∈ B.
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