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Problem Description



Networks of interacting stochastic processes

Given a finite connected graph G = (V ,E ),
write u ∼ v if (u, v) ∈ E ,
Nv = Nv (G ) = {u ∈ V : u ∼ v} denotes the neighborhood of v ,
dv = dv (G ) = |Nv (G )| denotes the degree of vertex v

Each node v ∈ V has a particle whose stochastic evolution depends
only on its own state and (symmetrically) on its neighbors’ states

In this course, we will focus on two types of dynamics:

A. Discrete-time (Markov) processes

B. Diffusions

Such models describe a range of phenonena in statistical physics,
epidemiology, neuroscience, math finance, etc.
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Some basic notation

• A space E is said to be Polish if it is a complete, separable
metrisable space

• for any Polish space E , let P(E ) denote the space of Borel
probability measures equipped with the topology of weak
convergence: νn → ν in P(E ) if for every bounded continuous
h : E → R, ∫

E
h(x)νn(dx)→

∫
E
h(x)ν(dx).

• Then P(E ) is also a Polish space.

• Also, given a Polish space E and x ∈ E , δx ∈ P(E ) denotes
the Dirac delta measure: for any Borel set A ⊂ E , δx(A) = 1 if
x ∈ A and 0 otherwise.
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A. Networks of interacting Markov chains

• Fix graph G = (V ,E ) and initial condition x = (xv )v∈V ∈ XV

discrete-time Markov chain: for v ∈ V ,

XG,x
v (t + 1) = F

(
XG,x

v (t),XG,x
NV

(t), ξv(t + 1)
)
, XG,x

v (0) = xv

where XA := (Xv )v∈A, in particular XNv (t) = (Xu(t))u∼v , and

• the state space X and noise space Σ are Polish

• ξv (t), v ∈ V , t = 0, 1, . . . , are i.i.d. Σ-valued noises

• continuous transition function F : X × St(X )× Σ→ X
where St =

⊔
k S

k(X ) is the disjoint union of (unordered)
sequences of length k in X : Sk(X ) = X k/Symk and Symk is
the group of permutations on [k].

• continuity in the sense that on inputs of length k ,
F (x , ·, ξ) = F k for some continuous F k : X × X k/Symk .
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A comment on the transition function F

Probabilistic cellular automata, synchronous Markov chains

XG,x
v (t + 1) = F (Xv(t),XNV(t), ξv(t + 1)), XG,x

v (0) = xv

where F : X × St(X )× Σ→ X is continuous

• A generic example is when F depends on the local empirical
measure of the neighborhood of v :
µG ,xv (t) = 1

dv

∑
u∼v δXG ,x

u (t)
, and

F (Xv (t), (XNV
(t)), ξv (t + 1))) = F̄

(
Xv (t), µG ,xv (t), ξv (t + 1)

)
for some continuous F̄ : X × P(X )× Σ 7→ X .
• But (i) F̄ cannot distinguish between configurations {0, 1} and
{0, 0, 1, 1} so cannot account for the number of occurences.
(ii) requiring F̄ to be continuous wrt P(X ) may be too
restrictive (e.g., may rule out a function of maxu∼v xu)
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Example: Discrete-time Contact Process

• State space X = {0, 1} = {healthy, infected}.
• Parameters p, q ∈ [0, 1].
• Xv (t) ∈ X , state of particle at v at time t

Transition rule: At time t, evolution of state of particle at any
(non-isolated) node v depends on state of particle at any v and the
neighbors’ empirical distribution at that time:

µv (t) =
1
dv

∑
u∼v

δXu(t)

• if state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,
• if state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

∑
u∼v

Xu(t) = p

∫
yµv (t)(dy)

where recall dv = degree of vertex v .
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Example: Susceptible-Infected-Recovered (SIR) Process

S
p×(frac. infected neighbors)
−−−−−−−−−−−−−−−−−−−−→ I

q−→ R
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B. Networks of interacting diffusions

• Fix a finite graph G = (V ,E )

• initial condition x = (xv )v∈V ∈ RdV for some d ∈ N
Evolves as a diffusion:

dXG,x
v (t) = b(XG,x

v (t),XG,x
Nv(G)(t))dt + σ(XG,x

v (t),XG,x
Nv(G)(t))dWv(t)

with XG,x
v (0) = xv, where

• drift coefficient b : Rd × St(Rd) 7→ Rd Lip. cont.

• diffusion coefficient σ : Rd × St(Rd) 7→ Rd×d Lip. cont.

• i.i.d. d-dimensional Brownian motions Wv , v ∈ V .

• Note each XG,x
v takes values in Cd := C([0,∞) : Rd),

Remark: Can consider more general, non-Markovian SDEs, with
time-dependent and progressively measurable coefficients
b(t,XG ,x

v ,XG ,x
Nv (G)), but we will restrict to the above for simplicity
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Example: Systemic Risk

Given independent Brownian motions Wv , v = 1, . . . , n,

dXv(t) = −hU(Xv(t))dt + θ(Xv(t)− Xv(t))dt + σdWv(t),

for some restoring potential U : R 7→ R, θ, σ > 0, h ∈ R, and with
some given initial conditions, where X v (t) is the local empirical
mean:

X v (t) :=
1
dv

∑
u∼v

Xu(t) =

∫
yµv (t)(dy), µv (t) =

1
dv

∑
u∼v

δXu(t)

• Xv (t) represents the state of risk of agent/component v
• Systemic risk is the risk that in an interconnected system of

agents that can fail individually, a large number of them fails
simultaneously, or nearly so.
• The interconnectivity of the agents and the form of evolution,

play an essential role in systemic risk assessment.
• Is most well understood when G = Kn, the complete graph
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Global empirical measures

Fix G = (V ,E ). For v ∈ V , with XG ,x
v (0) = xv , and

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)),

or

dXG,x
v (t) = b(XG,x

v (t),XG,x
Nv(G)(t))dt + σ(XG,x

v (t),XG,x
Nv(G)(t))dWv(t).

Quantities of interest include
• the (global) empirical measure on path space

µG ,x :=
1
|G |

∑
v∈G

δ
XG ,x
v

Note that µG ,x is a random element of P(X∞) or P(Cd);
• and the (global) empirical measure process

µG ,x(t) :=
1
|G |

∑
v∈G

δ
XG ,x
v (t)

Note that each µG ,x(t) is a random element of P(X ) or P(Rd),
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Summary: Networks of Interacting Stochastic Processes

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)),

dXG,x
v (t) = b(XG,x

v (t),XG,x
Nv(G)(t))dt + σ(XG,x

v (t),XG,x
Nv(G)(t))dWv(t).

µG ,x :=
1
|G |

∑
v∈G

δ
XG ,x
v

µG ,x(t) :=
1
|G |

∑
v∈G

δ
XG ,x
v (t)

———————————–

Key questions: Given a sequence of graphs Gn = (Vn,En) with
|Vn| → ∞, and appropriate initial conditions xn ∈ XVn ,

Q1. Do the processes XGn,xn
converge in a suitable sense?

Q2. Do the global empirical measures µGn,xn converge?

Q3. can one autonomously characterize the limiting dynamics of a
fixed or “typical particle” XGn,xn

v (t), t ∈ [0,T ]?
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Background and Motivation:
Classical Results



Classical Results in a Special Setting

For notational convenience, suppose σ = Id and the drift depends
on neighbors only via their local empirical measure:

dXGn,xn

v (t) = B(XGn,xn

v (t), µGn,xn

v (t))dt + dWv(t),

where recall µGn,xn
v (t) is the local empirical measure at t:

µGn,xn
v (t) =

1
dv

∑
u∈Nv

δ
XGn,xn
u (t)

for some continuous B : Rd × P(Rd)→ Rd , e.g. the linear case:

B(x ,m) :=

∫
Rd

b(x , y)m(dy), b : Rd × Rd → Rd

this reduces to the following SDE with “pairwise interactions”

dXGn,xn

v (t) =
1

dv(Gn)

∑
u∈Nv

b(XGn,xn

v (t),XGn,xn

u (t))dt + dWv(t),
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A well-studied case: when Gn = Kn the complete graph

In this case, Vn = [n], by setting X n = XKn,xn and slightly
modifying B , we can write

dXn
v(t) = B(Xn

v(t), µn(t))dt + dWv(t), v ∈ [n],

where µn(t) = 1
n

∑n
v=1 δX n

v (t)
is the global empirical measure.

Gaining intuition about the structure of the limit

• If B = 0, and (X n
v (0)), n ∈ N, are i.i.d. with law λ,

independent of (Wv ), (X n
v ) are i.i.d. Brownian motions. So

the SLLN implies that a.s. µn converges weakly to the
deterministic measure µ equal to Law(Xρ(0) + W ), Xρ(0) ∼ λ

• In general if µn converges to a deterministic measure-valued
process µ then since B is continuous, one might expect each
X n
v ⇒ Xρ, where Xρ(0) ∼ λ (ρ denotes a typical vertex) and

dXρ(t) = B(Xρ(t), µ(t))dt + dWv(t),

with µ(t) = Law(Xρ(t)) or in fact, µ = Law(Xρ)
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Mean-field limits and nonlinear processes: Gn = Kn

Theorem, McKean ’67; Oelschläger ’84; ’Sznitman ’91, etc.

If (Xn
v(0)), n ∈ N, are i.i.d. with common law λ and B is Lipschitz

continuous, then (µn(t))t∈[0,T ] converges in probability to the
unique solution (µ(t))t∈[0,T ] of the McKean-Vlasov equation

dX(t) = B(X(t), µ(t))dt + dW(t), µ(t) = Law(X(t)).

with X(0) ∼ λ, independent of the driving Brownian motion W .
Moreover, the particles become asymptotically independent.
Precisely, for fixed k ,

(X n
1 , . . . ,X

n
k )⇒ µ⊗k , as n→∞.

More generally the above results hold when µn(0)⇒ λ

The phenomenon is referred to as propagation of chaos.

Note: X is a Markov process with a nonlinear fwd Kolmogorov eqn.
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Mean-Field Systems or McKean-Vlasov Limits

A Slightly Different Perspective
When Gn = Kn, the existence of a limit for X n

v = XKn,xn
v follows

from general results on exchangeable processes:

Kurtz and Kotelenez (’10)
As n→∞, X n

v ⇒ X∞v , where

dX∞v (t) = b(X∞i (t), µ(t))dt + dWi (t), v = 1, 2, . . . ,

with the following limit existing:

µ(t) = lim
n→∞

1
n

n∑
i=1

δX n
i (t)

.

The McKean-Vlasov limit
describes the marginal dynamics of an infinite particle system
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Propagation of Chaos for Dense Graph Sequences

• If Gn 6= Kn but the sequence (Gn) is dense, in the sense that
the degrees in the graph Gn are diverging to infinity as
n→∞, then XGn,xn

v , v ∈ Gn, are still weakly interacting: e.g.,

dXGn,xn

v (t) =
1

dv(Gn)

∑
u∈Nv

b(XGn,xn

v ,XGn,xn

u )dt + dWt

• So still expect propagation of chaos and asymptotic
independence, so that once again, the global empirical measure
µGn,xn converges to a deterministic limit µ and so the typical
particle dynamics converges again to the mean-field limit

dX(t) =

∫
Rd

b(X(t), y)µ(t)(dy) + dW(t), µ(t) = Law(X(t)).

• Topology does not matter!
• Many recent results of this nature: Delattre-Giacomin-Luçon

’16; Delarue ’17, Coppini-Dietert-Giacomin ’18, Reis-Oliveira
’18, Bhamidi-Budhiraja-Wu ’19, etc.
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’16; Delarue ’17, Coppini-Dietert-Giacomin ’18, Reis-Oliveira
’18, Bhamidi-Budhiraja-Wu ’19, etc.
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Analogous Mean-Field Limits hold in Discrete-time

discrete-time Markov chain: if for v ∈ V ,

XG,x
v (t + 1) = F

(
XG,x

v (t), µG,x
V (t), ξv(t + 1)

)
, XG,x

v (0) = xv

for continuous F̄ : X × P(X )× Σ→ X

Mean-field limit for discrete-time chains

If Gn = Kn and initial conditions are such that µKn,xn(0) ⇒ µ(0),
then the (random) global empirical measure sequence µKn,xn

converges weakly to a deterministic measure sequence µ and for
any v , XKn,xn

v converges to the nonlinear discrete-time Markov
chain Xρ:

Xρ(t + 1) = F̄ (Xρ(t), µv (t), ξv ), µv (t) = Law(Xv(t)),

where (ξv )v∈V are i.i.d. noises with the same law as ξv (1).
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How well do mean-field approximations work?

Numerical results for the discrete-time SIR process
on the complete graph

Plot of probability of being healthy vs. time
simulations due to Mitchell Wortsman

Mean-field approximation works well!!
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How well do mean-field approximations work?

Numerical results for the discrete-time SIR Process
on the cycle graph

Plot of probability of being healthy vs. time
simulations due to Mitchell Wortsman

Mean-field approximation fails ...
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Beyond Mean-Field Limits

XG,x
v (t + 1) = F (Xv(t),XNV(t), ξv(t + 1)),

dXG,x
v (t) = b(XG,x

v ,XG,x
Nv(G))dt + σ(XG,x

v ,XG,x
Nv(G))dWv(t),

µG ,x :=
1
|G |

∑
v∈G

δ
XG ,x
v

µG ,x(t) :=
1
|G |

∑
v∈G

δ
XG ,x
v (t)

———————————–

Our Focus is on Asymptotics for Sparse Graph Sequences

Example: Gn = Erdős-Rényi G(n, pn) with npn → p ∈ (0,∞).
Open Question: Delattre-Giacomin-Luçon – to characterize typical
dynamics
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Outline of the Mini-Course



Outline

Recall Key questions: Given a sequence of sparse graphs
Gn = (Vn,En) with |Vn| → ∞, and appropriate initial conditions
xn ∈ XVn ,

Q1. Do the processes XGn,xn
converge in a suitable sense?

Q2. Do the global empirical measures µGn,xn converge?

Q3. can one autonomously characterize the limiting dynamics of a
fixed or “typical particle” P(XGn,xn

v (t), t ∈ [0,T ]?

• The rest of Lecture 1 will address Q1 (and p’haps part of Q2)

• Lecture 2 will address Q2 and discuss additional properties
useful for Q3

• Lecture 3 will focus on Q3
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Most Directly Relevant References
• Oliveira, Reis, Stolerman, “Interacting diffusions on sparse graphs:
hydrodynamics from local weak limits,” EJP 25 (2020).
• Lacker, R., Wu, “Large sparse networks of interacting diffusions,”
Arxiv Preprint (2019)
• Lacker, R., Wu, “Local weak convergence for sparse networks of
interacting processes,” Arxiv Preprint (2020)
• Lacker, R., Wu, "Locally interacting diffusions as space-time
Markov random fields," Arxiv Preprint (2019)
• Lacker, R., Wu, "Marginal dynamics of interacting diffusions on
unimodular Galton-Watson trees," Arxiv Preprint (2020)
• Lacker, R., Wu, “Marginal Dynamics of probabilistic cellular
automata on trees,” Preprint (2021).
• Ganguly and R., “Limits of empirical measures of interacting
particle systems on large sparse graphs,” near completion, (2021)
• MacLaurin, “Large Deviations of a Network of Neurons with
Dynamic Sparse Random Connections”, Arxiv Preprint, 2016.

https://projecteuclid.org/journals/electronic-journal-of-probability/volume-25/issue-none/Interacting-diffusions-on-sparse-graphs--hydrodynamics-from-local-weak/10.1214/20-EJP505.full
https://arxiv.org/abs/1904.02585v1
https://arxiv.org/abs/1904.02585
https://arxiv.org/abs/1911.01300
https://arxiv.org/abs/2009.11667
https://arxiv.org/abs/1607.05471


Rest of Lecture 1

Notion of local convergence
Process Convergence Result

Preliminaries on empirical measure convergence



Process Convergence Question

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)),

dXG,x
v (t) = b(XG,x

v ,XG,x
Nv(G))dt + σ(XG,x

v ,XG,x
Nv(G))dWv(t),

Q1. Do the processes XGn,xn
converge in a suitable sense?

• First step: for what sequences Gn can we expect this to hold?

• Taking inspiration form static models (Dembo-Montanari ’10),
when Gn converges locally to a limit graph G
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Notion of local convergence



Local weak convergence of graphs

Idea: Encode sparsity via local weak convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele ’03)

Definition: A graph G = (V ,E , ρ) is assumed to be rooted, finite
or countable, locally finite, and connected.

Definition: Rooted graphs Gn converge locally to G if:

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N,

where Bk(·) is ball of radius k at root, and ∼= means isomorphism.
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Examples of local weak convergence

1. Cycle graph converges to infinite line

ρ −→

...

ρ

...



Examples of local weak convergence

2. Line graph converges to infinite line

ρ −→

...

ρ

...



Examples of local weak convergence

3. Line graph rooted at end converges to semi-infinite line

ρ

−→

...

ρ



Examples of local weak convergence

4. Finite to infinite d-regular trees
(A graph is d-regular if ever vertex has degree d .)

ρ −→ ρ



Examples of local weak convergence

5. Uniformly random regular graph to infinite regular tree
Fix d . Among all d-regular
graphs on n vertices, se-
lect one uniformly at ran-
dom. Place the root at
a (uniformly) random ver-
tex. When n → ∞,
this converges (in law) to
the infinite d-regular tree.
(McKay ’81)

−→ ρ



Examples of local weak convergence

6. Erdős-Rényi to Galton-Watson
If Gn = G (n, pn) with npn → p ∈ (0,∞), then Gn converges in law
to the Galton-Watson tree with offspring distribution Poisson(p).

ρ

−→

root

ρ

...
...



Examples of Local weak convergence

7. Preferential Attachment Graphs to a Random Tree
A result by Berger-Borgs-Chayes-Saberi (’14) shows convergence of
preferential attachment graphs to a random tree

Key Point
Local limits of many classes of random graphs are often trees

8. Convergence of Finite Lattices
Zκ ∩ [−n, n]κ converges to Zκ
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Local convergence of marked graphs

Recall: Gn = (Vn,En, ρn) converges locally to G = (V ,E , ρ) if

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N.

Definition: With Gn,G as above: Given a metric space (E , dE )

and a sequence xn = (xnv )v∈Gn ∈ EGn , say that (Gn, xn) converges
locally to (G , x) if

∀k, ε > 0 ∃N s.t. ∀n ≥ N ∃ϕ : Bk(Gn)→ Bk(G ) isomorphism
s.t. maxv∈Bk (Gn) dE (xnv , xϕ(v)) < ε.

Lemma
The set G∗[E ] of (isomorphism classes of) (G , x) admits a Polish
topology compatible with the above convergence.
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Process Convergence Result



Beyond Mean-Field Limits ...

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)),

with (ξv (k))k∈N,v∈G i.i.d. with the same law for all graphs G ;

dXG,x
v (t) = b(XG,x

v (t),XG,x
Nv(G)(t))dt + σ(XG,x

v (t),XG,x
Nv(G)(t))dWv(t),

with XG,x
v (0) = xv, F continuous, b, σ Lipschitz continuous.

Let PGn,xn be the law of marked graph (Gn,Xn)

Theorem 1: Lacker-Ramanan-Wu; ’19/’20

1. For Markov chains, if (Gn, x
n)→ (G , x) in G∗[X ] then

PGn,xn → PG ,x in P(G∗[X∞])

2. For diffusions, if supn∈N supv∈Gn
|xnv | ≤ r and

(Gn, x
n)→ (G , x) in G∗[Br (Rd)], then PGn,xn → PG ,x in

P(G∗[Cd ])

3. Immediate extensions to the case of random graphs hold.

Note: For a certain class of interacting diffusions (slightly different
from ours), a similar result to 2. was obtained by
Oliveira-Reis-Stolerman
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Next lecture:

Will discuss the proof of Theorem 1 and then move to study
empirical measures
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