

Based Linear Maps to the Flag Variety

Jim Bryan & Balázs Elek University of British Columbia, Department of Mathematics

February 18, 2025. A map to the flag variety $\operatorname{Fl}_{n+1} = \operatorname{GL}_{n+1}/B$ from \mathbb{P}^1 is *linear* if it is given by $(x_0 : x_1) \mapsto g_0 x_0 + g_1 x_1$, modulo elements of B, where $g_0, g_1 \in \mathfrak{gl}_{n+1}$; it is *based* if $(1:0) \mapsto \operatorname{Id}$, again modulo elements of B.

Theorem. The space of based linear maps $\mathbb{P}^1 \to \mathrm{Fl}_{n+1}$ is isomorphic to $\mathrm{GL}_n \times \mathbb{C}^n$.

Proof: For a based linear map, we may pick a representative in the mod B equivalence class where $g_0 = \text{Id}$. Then the map is uniquely determined by the first n columns of g_1 , which in turn is determined by $(\alpha, v) \in \mathfrak{gl}_n \times \mathbb{C}^n$ as follows:

The corresponding map to Fl_{n+1} is well defined if and only if the first n columns of $\operatorname{Id} x_0 + g_1 x_1$ are independent for all $\lambda = x_0/x_1$. This condition is equivalent to the following:

$$\begin{split} &\operatorname{Ker}(\alpha^t - \lambda \operatorname{Id}) \cap \operatorname{Ker}(v^t) = 0 \quad \forall \lambda \in \mathbb{C} \\ & \Longleftrightarrow \operatorname{Im}(\alpha - \lambda \operatorname{Id}) \oplus \operatorname{Im}(v) = \mathbb{C}^n \quad \forall \lambda \text{ an eigenvalue of } \alpha \\ & \Longleftrightarrow \nexists \text{ a degree } n - 1 \text{ polynomial } p \text{ such that } p(\alpha)v = 0 \\ & \Longleftrightarrow \{v, \alpha v, \dots, \alpha^{n-1}v\} \text{ spans } \mathbb{C}^n \\ & \Longleftrightarrow (\alpha, v) \in f^{-1}(\operatorname{GL}_n \times \mathbb{C}^n) \end{split}$$

In the last step $f: \mathfrak{gl}_n \times \mathbb{C}^n \to \mathfrak{gl}_n \times \mathbb{C}^n$ is the map $(\alpha, v) \mapsto (\beta, w)$ where $\beta = (v|\alpha v| \dots |\alpha^{n-1}v)$ is the matrix whose k^{th} column is the vector $\alpha^{k-1}v$ and $w = \alpha^n v$. The theorem then follows from the observation that $f|_{f^{-1}(\operatorname{GL}_n \times \mathbb{C}^n)}$ is an isomorphism onto its image with inverse given by

$$lpha=etaegin{pmatrix} 0&ec{ec{ec{1}}}&ec{ec{ec{1}}}\ 1&ec{ec{ec{1}}}&ec{ec{eta}}\ 1&ec{ec{ec{1}}}&ec{ec{eta}}\ ec{eta}^{-1}w\ ec{ec{ec{1}}}&ec{ec{ec{1}}}ec{ec{1}}}ec{ec{ec{1}}}ec{ec{ec{1}}}ec{ec{1}}}ec{ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}}}ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1}} ec{ec{1}} ec{ec{1}}} ec{ec{1$$

and v is given by the 1^{st} column of β

The open set $f^{-1}(\operatorname{GL}_n \times \mathbb{C}^n)$ is given by the condition that (α, v) is a stable representation of the quiver shown on the front of this card.