

The Small Seifert Fibered Embeddahedron

Ahmad Issa \& Duncan McCoy
Variational AI \& Université du Québec à Montréal
ahmadissa@gmail.com, mc_coy.duncan@uqam.ca
August 10, 2022. Given any oriented 3-manifold M, it is well known that there exists a smooth oriented 4-manifold W with boundary M. What if we further require the 4-manifold W to have negative semi-definite intersection pairing $H_{2}(W) \times H_{2}(W) \rightarrow \mathbb{Z}$? Not all 3manifolds M bound such a 4-manifold, and understanding precisely which ones do turns out to be a surprisingly subtle problem that is related to the fractal on this postcard. Answering this question for families of 3-manifolds with various additional conditions imposed on W has led to many important and beautiful results concerning knots and 3-manifolds.

For example, Lisca characterised precisely which 2-bridge knots bound a smooth disk in the 4-ball [1]. He did so by answering this question when M is a lens space and $b_{2}(W)=0$. Greene determined the set of lens spaces arising as integral surgery on a knot by answering this question when M is a lens space space and W is the trace of a knot surgery [2].

Now consider this question when the 3-manifold M is a small Seifert fibered space oriented to bound a positive semi-definite plumbing 4-manifold. We can parameterize any such 3-manifold as $M=$ $S^{2}\left(e ; \frac{1}{r_{1}}, \frac{1}{r_{2}}, \frac{1}{r_{3}}\right)$ where $e \in \mathbb{N}$ is the central weight and $0<$ $r_{1}, r_{2}, r_{3}<1$ are rational numbers with $r_{1}+r_{2}+r_{3} \leq e$; see [3] for notation. Work in [3] analyzes the case $e>1$, leaving $e=1$ as the least understood case. For $e=1, Y$ is parameterized by points $\left(r_{1}, r_{2}, r_{3}\right)$, which form a rational tetrahedron \mathcal{T} in \mathbb{Q}^{3}.

Let $\mathcal{T}_{\partial} \subseteq \mathcal{T}$ be the points for which M bounds some smooth negative semi-definite 4-manifold. Donaldson's diagonalization theorem gives a
combinatorial lattice-based obstruction to this problem, and we denote by $\mathcal{T}_{\partial}^{d} \subseteq \mathcal{T}$ the points that pass this obstruction, so that by definition $\mathcal{T}_{\partial} \subseteq \mathcal{T}_{\partial}^{d}$.

What does the subset $\mathcal{T}_{\partial}^{d}$ of the tetrahedron look like? This postcard shows the face of the tetrahedron \mathcal{T} corresponding to $r_{1}+r_{2}+r_{3}=1$ with points in $\mathcal{T}_{\partial}^{d}$ colored in blue/green. The different shades of blue/green correspond to different minimal codimensions of lattice maps passing the obstruction. The mesmerizing picture that results hints at the perplexing fractal-like nature of this subtle problem.
[1] Lisca. Lens spaces, rational balls and the ribbon conjecture. Geom. Topol., 2007.
2] Greene. The lens space realization problem. Ann. of Math., 2013.
[3] Issa \& McCoy. On Seifert fibered spaces bounding definite manifolds. Pacific J. Math., 2020.

