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PROF. DRAGOS GHIOCA

Problem 1. Let f: R — R be a function satisfying the relation:

fle+y+ay) = f(z)+ f(y) + f(zy) for each z,y, € R.
Prove that f(z +y) = f(z) + f(y) for each z,y € R.

Solution. Letting = y = 0 we obtain f(0) = 3f(0) and so, f(0) = 0. Then
letting y = —1 (and z arbitrary) we obtain

f(=1) = f(z) + f(=1) + f(=2),
which yields f(—z) = —f(z) for all z € R. Now, we simply replace z and y by —z,
respectively —y and obtain
Fley —x —y) = fley) + (=) + [(~9) = f(o9) ~ (@)~ [ (0)

which combined with the main relation yields

flay — (x+y) + flzy + (z +y)) = 2f(zy).

Now, for fixed zy =: a, we observe that z+y varies on the entire set of real numbers
(i.e., it can be arbitrarily large and negative and also arbitrarily large and positive).
This proves that for all a,b € R we have

fla—=0b)+ f(a+b) =2f(a).
However, letting a = b in the above expression we get that
f(0) 4+ f(2a) =2f(a) and so, f(2a) =2f(a) because f(0) = 0.

Thus, f(a—0b)+ f(a+0b) = f(2a) for all a,b € R which yields the relation asked in
the problem.

Problem 2. Find all positive real numbers a with the property that the equation
log, (z) —x = 0 has exactly one real solution.

Solution. We split our analysis into several cases:

Case 1. 0<a< 1

In this case, log,(z) decreases from +oo to —oo, while x increases from 0 to
+00; so, using that f(x) :=log,(x) — z is a continuous function (on (0, +00)), then
we conclude that for each a € (0,1) there exists a unique = € (0, +00) such that
f(x) =0, ie., log,(z) = x.

Case 2. a > 1.

In this case the derivative of the above defined function f(z) is
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and so, f(x) is increasing on (0,1/1n(a)), while f(z) is decreasing on (1/In(a), +00).
We compute the global maximum of f(x) on (0, 400):

1) = (ﬁ) 1 In(lna) +1
1 (ar) - |

In(a) In(a) In(a)
Now, if the global maximum of f(z) is 0 then there exists indeed a single value of
x for which log, (z) = z; so,

Subcase 2(i). If a = e+ then there exists a unique value of 2 such that log, () =
x.

Now, if In(In(a)) + 1 > 0, then the global maximum of f(x) is negative and

therefore,

Subcase 2(ii). If @ > e* then there exists no « such that log, (z) = .

Finally, if In(In(a)) + 1 < 0, then the global maximum of f(z) is positive and
then we conclude that

Subcase 2(iii). If 1 < a < e+ then there exist exactly two values of z (one in
the interval (0,1/1n(a)) and the other value in (1/In(a), +00) since lim, g+ f(z) =

lim, 400 f(z) = —00) such that log,(x) = .
Problem 3.
(a) Find all integers n > 2 for which there exists an integer m > n such that
m divides the least common multiple of m —1,m —2,--- ,m —n+ 1.

(b) Find all positive integers n > 2 for which there exists exactly one integer
m > n such that m divides the least common multiple of m — 1,m —
2,--- ,m—n+1.

Solution. Let p® be a prime power appearing in the prime power factorization

of m. Then m dividing lem[m — 1,--- ;m — (n — 1)] yields that p® must divide one
of the numbers m — i (for i = 1,...,n — 1) and so, p® must divide m — (m — i) = 1.
In conclusion, m divides lem[m — 1,---,m — (n — 1)] if and only if m divides
lem[1,...,n — 1] := L(n). So, the existence of at least one integer m > n with the

property that it divides lem[m — 1,--- ;m — (n — 1)] is equivalent with asking that
L(n) > n. Now, since L(n) > (n —1)(n — 2) and

(n—=1)(n—2)>n for all n > 4,

while L(3) =2 < 3 and L(2) = 1 < 2, we conclude that for all n > 4 there exists
at least one integer m such that m divides lem[m — 1,--- ;m — (n — 1)].

Now, if we require that there exists precisely one integer m > n dividing lem[m —
1,---,m — (n — 1)] then we actually ask that there exists precisely one integer at
least equal to n which divides L(n), i.e., that integer would be L(n). So, we're
asking in this case for which n > 4 we have that the only divisor of lem[1,...,n—1]
at least equal to n is L(n). We claim that in this case we must have that n = 4.

First of all, we have L(4) = lem[1, 2, 3] = 6 and so indeed only 6 is at least equal
to 4 and divides 6. Now, if n > 5, then both (n — 1)(n — 2) and also (n —2)(n — 3)
are greater than n and they divide lem[l, ..., n — 1], which finishes our proof.

Problem 4. Find the minimum of

max{a+b+c,b+c+d,c+d+ed+e+ fie+ f+g}
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where the real numbers a,b,c,d, e, f,g vary among all the possible nonnegative
solutions to the equation a +b+c+d+e+ f+g=1.

Solution. We have that
(a+bt+e)+(d+et+f)+(e+f+g)>atbtectdtetf+g=1
and therefore, M := max{a+b+c,b+c+d,c+d+e,d+e+ fie+ f+g} > %
On the other hand, this minimum value of % for M is attained in the case

1 1 1
b=c=0,d=-,e=f=0,g=-.

a= -,
3 3 3



