PUTNAM PRACTICE SET 7

PROF. DRAGOS GHIOCA

Problem 1. Let a,b,c,d € R and let f : R — R be the function f(z) =
1—acos(xz)—bsin(x) — ccos(2z) —dsin(2z). If f(z) > 0 for each z € R, then prove
that a2 + b2 < 2 and also that ¢2 + d2? < 1.

Solution. Since sin(x 4+ m) = —sin(x) and cos(z +7) = — cos(z), we observe that
g(z) = f(z) + f(x + 7) = 2 — 2ccos(2x) — 2d sin(2x);

so, for each z € R we must have that ccos(2x) + dsin(2z) < 1.
We have that (the Cauchy-Schwarz Inequality)

ccos(2zx) + dsin(2z) < \/(02 + d2) - (cos?(2z) + sin?(2z)) = /2 + d2.
This inequality comes from the classical inequality:

(z1y1 + 22y2)” < (27 + 23) (47 +13)

which reduces to
0 < (7192 — 352y1)2-
On the other hand, we can find xg € R such that (if ¢,d # 0)

c d
cos(2xg) = ———= and sin(2zg) = ——
(20) Ve +d? (20) V2 + d?
2 2
since (\/czc+7d2‘> + (ﬁ) = 1. So,
glwo) =2- (1= Ve + @)
and because g(z¢) > 0, we must have that ¢? +d? < 1.
Similarly, noting that cos(x +7/2) = —sin(z) and sin(z + 7/2) = cos(z), we see

that
h(z) = f(x)+ f (x + g) =2 —a(cos(z) — sin(z)) — b (sin(x) + cos(z)) .

Furthermore,

. . T
cos(x) —sin(z) = sin(z 47 /2) —sin(z) = 2sin(r/4) cos(z+7/4) = v/2-cos (m + Z)
and

sin(x)+cos(z) = sin(z)+sin(z+7/2) = 2sin(z+7/4)-cos(r/4) = V/2-sin (ac + g) .

So, f(x) =2 — av/2cos(x + 7/4) — byv/2sin(x 4 7/4) and we can find z; € R such
that (assuming not both a and b are equal to 0)

T a s b
cos (xl + 4) PO and sin (xri + 1 e

Then h(z1) =2 — V2 - Va2 + b2 > 0 yields the inequality a? + b < 2.
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It is important to note that we do not claim that the conditions a?+b? <
2 and ¢ + d? < 1 are also sufficient to imply that f(x) >0 for all z € R.

Problem 2. Find all positive integers n for which there exist nonzero polynomials
fig € Zlxy,. .., x,] such that

(z1 +x2+~--+mn)-f(x1,...7:rn):g(x%...,xi).

Solution. We’ll show that for each n there are such polynomials f and g. Indeed,
let
flxe, ..., o) = H (€171 + -+ €Tn) ;

517~~~75ne{_171}
(e1rrmmen) A (1,1, 1)

this is a polynomial of degree 2" — 1 and we claim that

h(z1,...,zn) = (x1+ -+ xpn) - flz1,...,2,)

is a polynomial of the form g(z%,...,22). Indeed, for each i = 1,...,n, if we let o;
be the automorphism of Z[z1,...,z,] given by
o;i(z;) = —x; and o;(z;) = x; for each j # 1,
then we see that o;(h) = h. Therefore, each monomial of h contains x; at an even
power. So, repeating this argument for each ¢ = 1,...,n, we conclude that indeed,
h(x1,...,2n) = g(z7,...,22) for some g € Z[x1,...,Ty).

Problem 3. Let n > 2 be a positive integer and let S;, be the set of all integers of
the form 1 4 kn for some k£ € N. We say that a number m € S, is indecomposable
if there exist no z,y € S, such that m = zy. Prove that there exists some s € S,
which can be written in at least two distinct ways as a product of indecomposable
numbers from S,, (note that two decompositions consisting of precisely the same
indecomposable numbers, but appearing in a different order are considered to be
the same decomposition).

Solution. Let p be a prime number larger than n which is not in in S,. The
existence of such a prime number p follows from the classical argument assuming
first that there exist finitely many prime numbers py,...,p, which are not in S,
then we consider N :=n - Hle p; — 1; then NV > 1 and it is not divisible by any of
the numbers p; but also, it cannot be divisible only by prime numbers contained in
Sn. So, indeed, there exist infinitely many prime numbers not contained in S,, and
we simply pick a prime number p > n not contained in S,.

We let k be the smallest positive integer such that p* = 1 (mod n) and therefore,
k is the smallest positive integer such that p* € S,. Clearly, p* is indecomposable
in S,, and also, clearly, k > 2.

Now, let m € N be the smallest positive integer such that pm = 1 (mod n);
clearly, m € {2,...,n — 1}. Also, clearly, pm is indecomposable since otherwise
there would exist some 1 <4 < m such that i-p =1 (mod n), a contradiction.

We claim that M := p*m* can be written in at least two ways as a product
of indecomposable numbers from .S,,. Indeed, M is the product of k£ copies of pm
and pm is indecomposable. On the other hand, we can write M as a product of
p¥ (which is indecomposable) and the product of indecomposables which make up
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the number m* (which is in S,, because p¥-m* =1 (mod n) and p¥ =1 (mod n)).
Finally, we note that pm is not p* because

p*>p*>p-n>pm.

Problem 4. Let n be an integer > 2. We define two sequences {x;}1<;<, and
{yi}1<i<n given by:

Ti + Yi

n
i =[22].
} o Ti+1
where [z] is the integer part of z for each real number z. Prove that

n

minx; = [v/n].

i=1

331=n7y1=17$i+1=[

Solution. We have that
Ti + i < Ti+ - < xi+yi+1
2 - 2 2

because y; = [%] < fl < y; + 1. Now, regardless whether x; + y; is even or odd,
we get that

vty | [Tt
el
So, because z; + ;- > 2y/n for each i (and also z1 = n), then we conclude that
x; > [y/n] for all ¢ > 1; hence

Ti41 = {

i ;> .
wip = [V
Claim. If x; > [\/ﬁ] + 1, then x; > Tig1-
Proof of Claim. Since z; > [v/n] +1 > y/n, then % —x; < 0 and so, [T’iw} <

2
—1; then we have that
2 g
Tig1 — T = | <-1,

2

as desired.
So, the above claim proves that starting from 21 = n, then in less than n—[y/n]+1
steps we reach x; = [\/n].



