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PROF. DRAGOS GHIOCA

Problem 1. Let a, b, c, d ∈ R and let f : R −→ R be the function f(x) =
1−a cos(x)− b sin(x)− c cos(2x)−d sin(2x). If f(x) ≥ 0 for each x ∈ R, then prove
that a2 + b2 ≤ 2 and also that c2 + d2 ≤ 1.

Solution. Since sin(x+π) = − sin(x) and cos(x+π) = − cos(x), we observe that

g(x) := f(x) + f(x+ π) = 2− 2c cos(2x)− 2d sin(2x);

so, for each x ∈ R we must have that c cos(2x) + d sin(2x) ≤ 1.
We have that (the Cauchy-Schwarz Inequality)

c cos(2x) + d sin(2x) ≤
√

(c2 + d2) · (cos2(2x) + sin2(2x)) =
√
c2 + d2.

This inequality comes from the classical inequality:

(x1y1 + x2y2)2 ≤ (x21 + x22)(y21 + y22)

which reduces to
0 ≤ (x1y2 − x2y1)2.

On the other hand, we can find x0 ∈ R such that (if c, d 6= 0)

cos(2x0) =
c√

c2 + d2
and sin(2x0) =

d√
c2 + d2

since
(

c√
c2+d2

)2
+
(

d√
c2+d2

)2
= 1. So,

g(x0) = 2 ·
(

1−
√
c2 + d2

)
and because g(x0) ≥ 0, we must have that c2 + d2 ≤ 1.

Similarly, noting that cos(x+ π/2) = − sin(x) and sin(x+ π/2) = cos(x), we see
that

h(x) := f(x) + f
(
x+

π

2

)
= 2− a (cos(x)− sin(x))− b (sin(x) + cos(x)) .

Furthermore,

cos(x)−sin(x) = sin(x+π/2)−sin(x) = 2 sin(π/4) cos(x+π/4) =
√

2 ·cos
(
x+

π

4

)
and

sin(x)+cos(x) = sin(x)+sin(x+π/2) = 2 sin(x+π/4)·cos(π/4) =
√

2·sin
(
x+

π

4

)
.

So, f(x) = 2 − a
√

2 cos(x + π/4) − b
√

2 sin(x + π/4) and we can find x1 ∈ R such
that (assuming not both a and b are equal to 0)

cos
(
x1 +

π

4

)
=

a√
a2 + b2

and sin
(
x1 +

π

4

)
=

b√
a2 + b2

.

Then h(x1) = 2−
√

2 ·
√
a2 + b2 ≥ 0 yields the inequality a2 + b2 ≤ 2.
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It is important to note that we do not claim that the conditions a2+b2 ≤
2 and c2 + d2 ≤ 1 are also sufficient to imply that f(x) ≥ 0 for all x ∈ R.

Problem 2. Find all positive integers n for which there exist nonzero polynomials
f, g ∈ Z[x1, . . . , xn] such that

(x1 + x2 + · · ·+ xn) · f(x1, . . . , xn) = g(x21, . . . , x
2
n).

Solution. We’ll show that for each n there are such polynomials f and g. Indeed,
let

f(x1, . . . , xn) =
∏

ε1,...,εn∈{−1,1}
(ε1,...,εn)6=(1,1,··· ,1)

(ε1x1 + · · ·+ εnxn) ;

this is a polynomial of degree 2n − 1 and we claim that

h(x1, . . . , xn) := (x1 + · · ·+ xn) · f(x1, . . . , xn)

is a polynomial of the form g(x21, . . . , x
2
n). Indeed, for each i = 1, . . . , n, if we let σi

be the automorphism of Z[x1, . . . , xn] given by

σi(xi) = −xi and σi(xj) = xj for each j 6= i,

then we see that σi(h) = h. Therefore, each monomial of h contains xi at an even
power. So, repeating this argument for each i = 1, . . . , n, we conclude that indeed,

h(x1, . . . , xn) = g(x21, . . . , x
2
n) for some g ∈ Z[x1, . . . , xn].

Problem 3. Let n ≥ 2 be a positive integer and let Sn be the set of all integers of
the form 1 + kn for some k ∈ N. We say that a number m ∈ Sn is indecomposable
if there exist no x, y ∈ Sn such that m = xy. Prove that there exists some s ∈ Sn
which can be written in at least two distinct ways as a product of indecomposable
numbers from Sn (note that two decompositions consisting of precisely the same
indecomposable numbers, but appearing in a different order are considered to be
the same decomposition).

Solution. Let p be a prime number larger than n which is not in in Sn. The
existence of such a prime number p follows from the classical argument assuming
first that there exist finitely many prime numbers p1, . . . , p` which are not in Sn,

then we consider N := n ·
∏`
i=1 pi − 1; then N > 1 and it is not divisible by any of

the numbers pi but also, it cannot be divisible only by prime numbers contained in
Sn. So, indeed, there exist infinitely many prime numbers not contained in Sn and
we simply pick a prime number p > n not contained in Sn.

We let k be the smallest positive integer such that pk ≡ 1 (mod n) and therefore,
k is the smallest positive integer such that pk ∈ Sn. Clearly, pk is indecomposable
in Sn and also, clearly, k ≥ 2.

Now, let m ∈ N be the smallest positive integer such that pm ≡ 1 (mod n);
clearly, m ∈ {2, . . . , n − 1}. Also, clearly, pm is indecomposable since otherwise
there would exist some 1 ≤ i < m such that i · p ≡ 1 (mod n), a contradiction.

We claim that M := pkmk can be written in at least two ways as a product
of indecomposable numbers from Sn. Indeed, M is the product of k copies of pm
and pm is indecomposable. On the other hand, we can write M as a product of
pk (which is indecomposable) and the product of indecomposables which make up
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the number mk (which is in Sn because pk ·mk ≡ 1 (mod n) and pk ≡ 1 (mod n)).
Finally, we note that pm is not pk because

pk ≥ p2 > p · n > pm.

Problem 4. Let n be an integer ≥ 2. We define two sequences {xi}1≤i≤n and
{yi}1≤i≤n given by:

x1 = n, y1 = 1, xi+1 =

[
xi + yi

2

]
and yi+1 =

[
n

xi+1

]
,

where [z] is the integer part of z for each real number z. Prove that
n

min
i=1

xi = [
√
n].

Solution. We have that

xi + yi
2

≤
xi + n

xi

2
<
xi + yi + 1

2

because yi =
[
n
xi

]
≤ n

xi
< yi + 1. Now, regardless whether xi + yi is even or odd,

we get that

xi+1 =

[
xi + yi

2

]
=

[
xi + n

xi

2

]
.

So, because xi + n
xi
≥ 2
√
n for each i (and also x1 = n), then we conclude that

xi ≥ [
√
n] for all i ≥ 1; hence

n
min
i=1

xi ≥
[√
n
]
.

Claim. If xi ≥ [
√
n] + 1, then xi > xi+1.

Proof of Claim. Since xi ≥ [
√
n] + 1 >

√
n, then n

xi
− xi < 0 and so,

[ n
xi
−xi

2

]
≤

−1; then we have that

xi+1 − xi =

[ n
xi
− xi
2

]
≤ −1,

as desired.
So, the above claim proves that starting from x1 = n, then in less than n−[

√
n]+1

steps we reach xi = [
√
n].


