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PROF. DRAGOS GHIOCA

Problem 1. Find the largest possible integer which is the product of finitely many
positive integers whose sum equals 2018.

Solution. Let x1, . . . , xr be positive integers whose sum is 2018 and which have
the largest possible product.

First we notice that if xr ≥ 4, then replacing xr by x′r = 2 and x′r+1 = xr − 2,
while x′i = xi for each i ≤ r− 1 leads to a larger product. So, this means that each
xi is less than 4.

Secondly, we cannot have xr = 1 since then replacing xr−1 by x′r−1 = xr−1 + 1
and keeping x′i = xi for each i ≤ r − 2 would lead to a sequence x′1, . . . , x

′
r−1

whose sum is 2018 but whose product is larger than for the product of the original
numbers xi.

So, we conclude that each xi ∈ {2, 3}. Now, if we were to have three of the xi’s
equal to 2, we could replace them with two numbers equal to 3 and the product
would only increase. Therefore, we have only one or two nmbers equal to 2 and
all the rest of the numbers equal 3. Since 2018 ≡ 2 (mod 3), this means x1 = 2
and xi = 3 for each i = 2, . . . , r; clearly, since 2 + 3r = 2018, then we must have
r = 672. So, the largest product of the numbers adding up to 2018 is 2 · 3672.

Problem 2. Let P ∈ R[x] be a polynomial with the property that P (x) > 0 for
each positive real number x. Then prove that there exist polynomials Q1, Q2 ∈ R[x]

with all coefficients nonnegative, such that P = Q1

Q2
.

Solution. First of all, since P (x) > 0 for all x > 0, we conclude that its leading
coefficient must be positive; so, without loss of generality we may assume from now
on that P (x) is monic since its leading coefficient can be absorbed in Q1(x).

Second, we know that P (x) is a product of linear polynomials of the form x+ ri
for some nonnegative real numbers ri and perhaps also a product of unfactorable
quadratics (over R), i.e., quadratics of the form x2 + aix + bi where a2i < 4bi. So,
it suffices to prove that each polynomial of the form

x+ ri for some ri ≥ 0, and

x2 + aix+ bi where a2i < 4bi.

is of the form
Q1,i(x)
Q2,i(x)

where each Q1,i, Q2,i are polynomials with nonnegative real

coefficients. Clearly, this statement holds for polynomials of the form x + ri; so,
we’re left to analyze the case of quadratic polynomials. In this latter case, we let

f(x) := x2 + ax+ b

such a quadratic polynomial with a2 < 4b; then we let b := r2 for some positive
real number r and then we let t ∈ [0, π] such that a = −2r cos(t). Our goal is to
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find some polynomials g1(x) and g2(x) with nonnegative real coefficients such that

f(x) = g1(x)
g2(x)

.

If t ∈ [π/2, π], then we are done (simply take g1(x) := f(x) and g2(x) := 1).
Now, if t ∈ [0, , π/2) (i.e., cos(t) > 0 and implicitly, a < 0), we observe that

f(x) · (x2 − ax+ b) = x4 − (a2 − 2b)x2 + b2 = x4 − 2r2 cos(2t) + r4.

Then we repeat our analysis and so, if 2t ∈ [π/2, π], then we are done since then
cos(2t) ≤ 0. Now, if 2t ∈ [0, π/2) (and so, implicitly, a2 > 2b), then we repeat the
construction and get:

f(x) · (x2 − ax+ b) · (x4 + (a2 − 2b)x2 + b2) = x8 − 2r4 cos(4t)x4 + r8.

Eventually, there must exist a first positive nonenegative integer i0 such that 2i0t ∈
[π/2, π] and for that i0, we have that the corresponding polynomial

x2
i0+1

− 2r2
i0

cos
(
2i0t

)
x2

i0
+ r2

i0+1

has all its coefficients nonenegative and we reached this polynomial by multiplying
f(x) by polynomials which were themselves with nonnegative coefficients.

Problem 3. Prove that there exist infinitely many n ∈ N with the property that
7n contains in its decimal expansion 2018 consecutive digits equal to 0.

Solution. The point is that gcd(7, 10) and so, Euler’s Theorem guarantees that

75
2018·22020 ≡ 7φ(102019) ≡ 1 (mod 102019),

thus showing that 75
2018·22020 ends with the digit 1 and it has 2018 digits of 0

preceding that last digit.

Problem 4. Let a ∈ (0, 1) be a real number. We consider the function f :
(0, 1] −→ (0, 1] given by:

f(x) = x+ 1− a if 0 < x ≤ a and f(x) = x− a if a < x ≤ 1.

Prove that for any interval I ⊆ (0, 1], there exists a positive integer n such that
f◦n(I) ∩ I 6= ∅.

Solution 1. We note that f is a bijection map sending (0, 1] into itself. Also,
we claim that for any interval J ⊆ (0, 1], we have that f(J) is also a union of
intervals whose sums of their lengths equals the length of J . This is proven easily
by considering the three cases:

Case 1. J ⊆ (0, a]. In this case, f(J) is an interval of the same length as J
contained in (1− a, 1].

Case 2. J ⊆ (a, 1]. In this case, f(J) is an interval of the same length as J
contained in (0, 1− a].

Case 3. J = (α, β] (or any other choice of including or not any of the two
endpoints) for some 0 ≤ α < a < β ≤ 1. Iin this case, f(J) = (α+1−a, 1]∪(0, β−a]
whose length is

1− (α+ 1− a) + (β − a)− 0 = β − α, as claimed.

Now, if fn(I) ∩ I = ∅, then we claim that f i(I) ∩ f j(I) = ∅ for any integers
i > j ≥ 0. Indeed, using the fact that f is a bijection on (0, 1] (and therefore, fm is
a bijection for each m ∈ N), we get that if there exists some x ∈ f i(I)∩ f j(I), then
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letting y ∈ (0, 1] be the unique real number such that f j(y) = x, then we would
have that y ∈ I ∩ f i−j(I), contradiction. (Note that we do not claim that y is fixed
by f i−j , however we know that x = f j(y) ∈ f j(f i−j(I)) and f j is a bijection, thus
showing that y ∈ f i−j(I).) But then we would have an infinite sequence of unions
of intervals fn(I), each one of them of total length equal to the length of I and all
these intervals would fit into the interval (0, 1], which is a contradiction. So, indeed
there must be some n ∈ N such that fn(I) ∩ I 6= ∅.

Solution 2. We notice that from our definition of the function f , we have that
for any real number x, we have that f(x)−x+ a ∈ Z. By induction, we prove that
fn(x) − x + na ∈ Z for each x ∈ (0, 1]. Indeed, assuming that there exists some
pn(x) ∈ Z (i.e., an integer depending on x) such that

fn(x) = x− na+ pn

then we compute

fn+1(x) = f(x−na+pn(x)) = x−na+pn(x)−a+p1(x−na+pn(x)) ∈ (x−(n+1)a)+Z,

where p1(x) := f(x)− (x− a) (and more generally, pn(x) := fn(x)− (x−na)). So,
indeed, fn(x)− (x− na) ∈ Z for each n ∈ N and for each x ∈ (0, 1].

Now, for any given interval I we claim that there must exist some x ∈ I such
that also x ∈ fn(I), i.e., there exists some y ∈ I such that

x = fn(y) = y − na+ pn(y).

So, na − pn(y) = y − x, i.e., for any ε > 0, there exists some positive integer n
and some integer qn such that na − qn ∈ (−ε, ε). The conclusion follows from a
classical argument looking at the fractional part of na as we vary n ∈ N and note
that for some N sufficiently large (anything larger than 1/ε would work) we must
have two distinct integers N ≥ i > j ≥ 0 such that |{ia} − {ja}| < ε and so,
(i − j)a − q ∈ (−ε, ε), where q = [ia] − [ja] (the difference of their corresponding
integer parts).

Problem 5. Find (with proof) all possible function f : N −→ N with the property
that f(n+ 1) > f(f(n)) for each n ∈ N.

Solution. We will prove that there is only one such function, which is f(n) = n
for each n ∈ N.

First we prove by induction on k that for each n ≥ k, we have that f(n) ≥ k.
The base case k = 1 is obvious. So, assuming that we prove f(n) ≥ k for each
n ≥ k, next we derive that f(n) ≥ k+ 1 for each n ≥ k+ 1. Indeed, for any n ≥ k,
we have that

f(n+ 1)

> f(f(n)) by the main hypothesis

= f(m) for some m ≥ k since n ≥ k and using the inductive hypothesis

≥ k again by the inductive hypothesis.

So, indeed, f(n+1) ≥ k+1 for each n ≥ k, which concludes the proof for our claim
that f(n) ≥ k whenever n ≥ k for any given k ∈ N.

Now, assume there exists some n ∈ N such that f(n) > n and we will derive
a contradiction, which will conclude our proof that the only function is the one
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satisfying f(n) = n for each n ∈ N. So, let n1 be the smallest positive integer n
such that f(n) > n. Clearly, we cannot have f(n1) = n1 + 1 since then

f(n1 + 1) > f(f(n1)) = f(n1 + 1), contradiction.

Also, since n1 is the smallest such positive integer, then it must be that for each
positive integer n < n1, we have that f(n) = n. Now, for each n > n1, we have that
f(n) > f(f(n−1)) and moreover, f(n−1) ≥ n1 since n > n1 and f(k) ≥ k for each
k ∈ N. Now, if f(n− 1) = n1, we note that it cannot be that n− 1 ≥ n1 + 1 since
then we would have that f(n−1) ≥ n1+1, a contradiction. So, if f(n−1) = n1 then
we would get that n− 1 = n1, which is again a contradiction since our assumption
yields that f(n1) > n1. In conclusion, we must have that f(n − 1) > n1. So,
this means that our hypothesis that f(n1) > n1 yields the following property: for
each n > n1, there exists some m > n1 such that f(n) > f(m) (more precisely,
m = f(n− 1)). But this would mean that the set of positive integers

{f(n1 + 1), f(n1 + 2), · · · , · · · }
does not have a minimal element, which is impossible. So, indeed, we must have
that f(n) = n for each n ∈ N.


