
PUTNAM PRACTICE SET 3

PROF. DRAGOS GHIOCA

Problem 1. The set A has 6 elements. Determine with proof whether we can
find distinct subsets B1, . . . , Bm of A (for some m ∈ N) satisfying the following
properties:

• each Bi has exactly 3 elements;
• for any two elements x and y of A, there exist precisely two indices 1 ≤ i <
j ≤ m such that x, y ∈ Bi and x, y ∈ Bj .

Solution. First, we note that m = 10 since each set Bi yields 3 distinct pairs
and then the above condition asks that each pair (i, j) of elements of A (where we
consider A = {1, 2, 3, 4, 5, 6}) must appear exactly twice; so,

3 ·m = 2 ·
(

6

2

)
yields m = 10.

Claim. We cannot have three sets Bi be of the form {a1, a2, a3}, {a1, a2, a4} and
{a1, a3, a4}.

Proof of Claim. Without loss of generality, let’s assume B1 = {1, 2, 3}, B2 =
{1, 2, 4} and B3 = {1, 3, 4}. But then we need two sets Bi to contain {1, 5}; however
none of these Bi would be allowed to contain either 2, 3 or 4, which would be a
contradiction.

So, assume now that B1 = {1, 2, 3} and B2 = {1, 2, 4} (which we can always
assume after relabelling our elements). Also, let B3 contain {1, 3}; then we know
that B3 6= {1, 3, 4} and therefore (again after a relabelling of our elements), we may
assume B3 = {1, 3, 5}. Next, we assume B4 and B5 contain {1, 6}; then neither one
can contain 2 or 3 and therefore, it must contain 4, respectively 5. So, assume that
B4 = {1, 4, 6} and B5 = {1, 5, 6}. Next we see that if B6 contains {2, 3} then its
third element must be 6 and similarly, if B7 contains {2, 4} then its third element
must be 5. Next assume B8 and B9 contain {3, 4}; we see that their third element
cannot be 1 or 2, so they must be 5 and 6, i.e., B8 = {3, 4, 5} and B9 = {3, 4, 6}.
This leaves us with B10 = {2, 5, 6}. So, our sets are

{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}

{2, 3, 6}, {2, 4, 5}, {3, 4, 5}, {3, 4, 6}, {2, 5, 6}.

Problem 2. We consider the following real numbers:

x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn.

Let σ : {1, . . . , n} −→ {1, . . . , n} be any permutation. Prove that

n∑
i=1

(xi − yi)2 ≤
n∑
i=1

(
xi − yσ(i)

)2
.
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Solution. For any 1 ≤ i < j ≤ n, we note that

(xi − yi)2 + (xj − yj)2 − (xi − yj)2 − (xj − yi)2

= 2(xiyj + xjyi − xiyi − xjyj)
= −2(xi − xj)(yi − yj)

≤ 0.

So, if σ(i) > σ(j) for some i < j, then switching σ(i) and σ(j) (i.e., composing
σ with the transposition (i, j)) would only decrease (or leave unchanged) the sum∑n
i=1

(
xi − yσ(i)

)2
. After applying finitely many transpositions, we’re back at the

identity permutation and at each step we only decreased (or perhaps left unchanged)
the given sum.

Problem 3. For any given positive real numbers a, b, c, d, we let

Sa,b,c,d :=
a

a+ b+ d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

Find all possible values that are taken by Sa,b,c,d as we vary a, b, c, d in the set of
all positive real numbers.

Solution. Let R+ := (0,+∞) be the set of all (strictly) positive real numbers.
We consider the function

f : R4
+ −→ R+ given by

f(a, b, c, d) =
a

a+ b+ d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

Clearly,

f(a, b, c, d) <
a

a+ b
+

b

a+ b
+

c

c+ d
+

d

c+ d
= 2

and also,

f(a, b, c, d) >
a

a+ b+ c+ d
+

b

a+ b+ c+ d
+

c

a+ b+ c+ d
+

d

a+ b+ c+ d
= 1.

So, the image of f is contained in the open interval (1, 2). On the other hand, f is
continuous and moreover, for any given b, d ∈ R+ we have that

lim
a,c→0

f(a, b, c, d) = lim
a→0

a

a+ b+ d
+lim
c→0

c

b+ c+ d
+ lim
a,c→0

b

a+ b+ c
+ lim
a,c→0

d

a+ c+ d
= 0+0+

b

b
+
d

d
= 2,

while for any given c, d ∈ R+, we have

lim
a,b→0

f(a, b, c, d) =
c

c+ d
+

d

c+ d
= 1.

Now, since R4
+ is a connected set (i.e., it cannot be written as a union of two disjoint

open subsets; note that a product of connected spaces is connected), then its image
under a continuus function must be connected and therefore, it must be precisely
the open interval (1, 2).

Problem 4. Let {an}n∈N be a sequence of real numbers satisfying the following
properties:

(i) 0 ≤ an ≤ 1 for each n ≥ 1; and
(ii) an − 2an+1 + an+2 ≥ 0 for each n ≥ 1.
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Prove that for each n ≥ 1, we have that 0 ≤ (n+ 1)(an− an+1) ≤ 2 for each n ≥ 1.

Solution. First we note that bn := an−an+1 must be nonnegative for each n ≥ 1.
Indeed, if bn0 < 0 for some n0 ∈ N, then condition (ii) yields that

bn0 ≥ bn0+1 ≥ bn0+2 ≥ · · ·
and so,

an0+` ≥ an0
− `bn0

for each ` ≥ 1

and so, if ` is sufficiently large, then condition (i) would no longer hold because we
would actually get that an → +∞ as `→∞ (note that bn0 < 0 by our assumption).
So, indeed, we must have that bn ≥ 0 and so, (n+ 1)(an − an+1) ≥ 0.

Now, assume there exists some n1 ∈ N such that bn1
> 2

n1+1 . We have that

b1 ≥ b2 ≥ · · · ≥ bn1

and so,

a1 − an1+1 =

n1∑
i=1

bi >
2n1
n1 + 1

and since 2n1 ≥ n1 + 1, we conclude that we would have that a1 − an1+1 > 1
contradicting our hypothesis that both a1 and an1+1 are in the interval [0, 1]. So,
it must be that (n+ 1)(an − an+1) ≤ 2 for each n ≥ 1.

Problem 5. Let M be the set of all positive integers which do not contain the
digit 9 in their decimal expansion. Prove that

∑
x∈M

1
x < 80.

Solution. Let k ∈ N. Then among all the numbers with k digits, we have only
8 possibilities for their first digit, while for each of the other digits, there are 9
possibilities. So, we have 8 · 9k−1 numbers with exactly k digits which do not
contain the digit 9. Furthermore, each such number with k digits is at least equal
to 10k−1. So,∑

x∈M

1

x
<

∞∑
k=1

8 · 9k−1

10k−1
= 8 ·

∞∑
`=0

(
9

10

)`
= 8 · 1

1− 9
10

= 80,

as claimed.

Problem 6.

(A) Show that the sum of the following series
∞∑
n=1

1

n!

is not a rational number.
(B) Let a and b be integers larger than 1. We construct two sequences {an}n∈N

and {bn}n∈N as follows:

a1 = a and for all n ≥ 1, we have an+1 = nan − 1

and
b1 = b and for all n ≥ 1, we have bn+1 = nbn + 1.

Prove that there exist at most finitely many pairs (m,n) ∈ N×N such that
am = bn.
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Solution.

(A) We argue by contradiction and therefore assume the series is a rational
number a

b with a, b ∈ N and gcd(a, b) = 1. Since

5

3
= 1 +

1

2
+

1

6
<

∞∑
n=1

1

n!
< 1 +

∞∑
n=1

1

n(n+ 1)
= 2,

we get that b ≥ 4. Now, we note that
∞∑

n=b+1

1

n!
<

1

(b− 1)!
·
∞∑
n=b

1

n(n+ 1)
=

1

b!
.

On the other hand,

a

b
−

b∑
n=1

1

n!
=

c

b!
≥ 1

b!
,

where c ∈ N since b! is the least common multiple of all the denominators
and furthermore, the above difference must actually equal the tail of the in-
finite series (and therefore, it must be positive). The above two inequalities
contradict each other, which concludes our proof of part (A).

(B) We first find the general formula for an, respectively bn. We have:

an+1

n!
=

an
(n− 1)!

− 1

n!
.

So,

an+1

n!
= a−

n∑
k=1

1

k!
;

thus

an = (n− 1)! ·

(
a−

n−1∑
k=1

1

k!

)
.

A similar analysis yields

bn = (n− 1)! ·

(
b+

n−1∑
k=1

1

k!

)
.

Since a ≥ 2 and
∑∞
k=1

1
k! < 2, we conclude that limn→∞ an =∞. Similarly,

limn→∞ bn =∞.
We let e :=

∑∞
k=0

1
k! . Assume there exist infinitely many pairs (mi, ni) ∈

N×N such that ami
= bni

. Because limn→∞ an =∞ and limn→∞ bn =∞
(in other words, the sequences are not repeating after a while), then both
the first and the second entries in those pairs (mi, ni) grow arbitrarily large
(i.e., limi→∞mi =∞ and limi→∞ ni =∞). Therefore

(1) lim
i→∞

a−
∑mi−1
k=1

1
k!

b+
∑ni−1
k=1

1
k!

=
a− e+ 1

b+ e− 1
.

Furthermore, since e /∈ Q (as proven in part (A)), then a−e+1
b+e−1 /∈ Q. Since

ami
= bni

, the formulas for the ak’s and for the bk’s coupled with limit (1)
yield that

lim
i→∞

(ni − 1)!

(mi − 1)!
=
a− e+ 1

b+ e− 1
/∈ Q.
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In case it exists, there are three possibilities for the limit

(2) lim
i→∞

(ni − 1)!

(mi − 1)!

either 0, or 1, or ∞ depending on whether mi > ni for all i sufficiently
large, or mi = ni for all i sufficiently large, or mi < ni for all i sufficiently
large. (If at least two of the possibilities: mi > ni, or mi = ni, or mi < ni
occur infinitely often then the limit (2) does not exist.) In either case, the
limit (2) cannot be a−e+1

b+e−1 /∈ Q which yields the desired conclusion.


