
PUTNAM PRACTICE SET 27: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Players A and B play the following game: each player (starting with
player A) take turns in writing a real number in one of the (still) empty entries of
a 2020-by-2020 matrix. Player A wins if the determinant of the matrix at the end
is nonzero, while player B wins if the determinant of the matrix is zero. Who has
a winning strategy?

Solution. Player B has a winning strategy since each time when player A writes
a number x on some row, then player B writes the number −x on another empty
entry from the same row. Since the dimension of the matrix is even, then we’re
always guaranteed that player B will have at least one empty entry on the row
where player A just wrote a number. Also, this strategy ensures that at the end
of the game, the sum of the entries on each row equals 0, thus showing that the
matrix admits a nontrivial vector in its null space (i.e., the vector whose all entries
are equal to 1); hence the matrix is not invertible and so, its determinant must be
0.

Problem 2. Let n ∈ N. We start with a finite sequence

a1, a2, . . . , an

of positive integers and then at each step, we perform the following operation: if
for some indices 1 ≤ i < j ≤ n, we have that ai does not divide aj , then we replace
ai by gcd(ai, aj) and also, replace aj by lcm[ai, aj ].

Prove that after finitely many steps we can no longer perform any new operation.
Furthermore, show that the final sequence we obtain is the same one regardless of
the order of the above operations that we performed.

Solution. First we prove that our process ends in finitely many steps; we achieve
this by showing that the elements of our sequence eventually stop changing (i.e.,
we eventually arrive at the situation that for each 1 ≤ i < j ≤ n, we have ai | aj).
In order to do this, we first observe that in our process never the product of all
elements

∏n
i=1 ai changes since for any two positive integers a and b, we have

a · b = gcd(a, b) · lcm[a, b].

Next we see that in our process, each element of any new sequence will be a divisor
of

lcm[a1, a2, . . . , an].

Also, an can only increase in our process; so, this means that eventually, the last
element of the sequence an has to stabilize and never changes again. But then this
means that we are left with a sequence of n− 1 elements for which we perform the
described operation and so, a repeated argument as above yields that our process
ends in finitely many steps. (Alternatively, we could have argued this final step
using induction on n.)
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A completely different and shorter proof for the fact that our process
ends after finitely many steps is to note that the quantity

n∏
i=1

an+1−i
i

decreases due to our process (because if a · b = A ·B with A ≤ a, b ≤ B and
1 ≤ i < j ≤ n, then an+1−ibn+1−j ≥ An+1−iBn+1−j) and so, in finitely many
steps, we must finish changing our sequence.

Now, we show that no matter in which order we performed the allowed changes
in our sequence, at the end, the final sequence is the same. For this, we use the
fact that for each prime p and for each m ∈ N, the number of elements ai from
our sequence which are divisible by pm is unchanged at each change performed in
our sequence. Indeed, for any two positive integers a and b, if both are divisible
by pm then so is their greatest common divisor and their least common multiple;
on the other hand, if none of the two integers is divisible by pm, then neither is
their greatest common divisor, nor is their least common multiple divisible by pm.
Finally, if exactly one of them is divisible by pm, while the other integer is not
divisible by pm, then their least common multiple is divisible by pm, while their
greatest common divisor is not divisible by pm.

So, using the above fact regarding the divisibility by pm, then for each prime
p we know precisely which are the elements in our sequence divisible by various
powers of p because in our final sequence we have that ai | aj whenever i < j. So,
for a given prime p and for the largest power pm dividing exactly k ≥ 1 of the initial
elements of our sequence, then we know that

an, an−1, . . . , an−k+1

are the only elements of our final sequence divisible by pm. This fact alone allows
us to construct uniquely the final sequence for our process because this identifies
uniquely the prime factors of each element of the final sequence.

Problem 3. Define f : R −→ R as follows:

f(x) =

{
x if x ≤ e

xf(ln(x)) if x > e

Determine whether the following series is convergent or divergent:
∞∑

n=1

1

f(n)

Solution. We have that our function has the following form. Given the sequence
{an}n≥0 for which

a0 = 1 and an+1 = ean for n ≥ 0,

we have that on the interval [an, an+1], the function f(x) equals

x · ln(x) · ln(ln(x)) · · · · · ln(ln(· · · ln(x))),

where in the last iterated logarithmic function, we have n nested logarithms. In
particular, when n = 0, then on the interval [1, e] (since a1 = e), we have that
f(x) = x, while when n = 1, then on the interval [e, ee] (since a2 = ee), we
have that f(x) = x ln(x); next, on the interval

[
ee, ee

e]
, the function f(x) equals

x ln(x) ln(ln(x)).
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Now, due to the integral test, the series
∞∑

n=1

1

f(n)

is divergent precisely when the integral∫ ∞
1

1

f(x)
dx

diverges, because the function x 7→ 1
f(x) is decreasing (note that each time when

we introduce a new nested logarithmic function on a new interval [an, an+1], the
corresponding n-th nested logarithmic function is always at least equal to 1 when
evaluated on [an, an+1]). For each n ≥ 0, we compute∫ an+1

an

1

f(x)
dx

by performing the substitution x = et and we get (due to the formula for f(x))
that ∫ an+1

an

1

f(x)
dx =

∫ an

an−1

1

f(x)
dx.

Therefore, we have (after repeating the above process) that for each n ≥ 0,∫ an+1

an

1

f(x)
dx =

∫ a1

a0

1

f(x)
dx =

∫ e

1

1

x
dx = 1.

Therefore, the integral
∫∞
1

1
f(x)dx diverges and so, also our original series diverges.

Problem 4. Prove that there exists a positive constant c with the property that
in any finite nontrivial group G, there exists a suitable subset S ⊆ G satisfying the
following two properties:

• |S| ≤ c log(|G|); and
• for each x ∈ G, there exist distinct elements x1, . . . , xk ∈ S such that
x = x1 · x2 · · · · · xk.

Solution. We show how to construct a sequence S of elements of G of cardinality
of the order of log(|G|) (i.e., bounded above by a positive constant times log |G|)
such that each element of G can be obtained as a product of some subsequence of
S.

As a matter of notation, for any sequence S of elements in G, we let S̃ be the set
of elements of G which can be obtained as a product of elements from a subsequence
of S.

Now, we start with S containing the identity element of G and then at each step
of our process, we do the following:

• either each element of G is of the form g−11 ·g2 with g1, g2 ∈ S̃. If that’s the
case, then each element of G can be obtained as a product of a subsequence
of elements in S ∪ S−1, where S−1 is the set consisting of all elements of
the form g−1 for g ∈ S.
• or there exists an element h ∈ G which cannot be written as g−11 g2 for any

g1, g2 ∈ S̃. If that’s the case, then we enlarge our sequence S by inserting
also the element g. We claim that when we do this we will generate at least
twice as many elements with our new sequence S ∪ {h} than we generated
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with our sequence S. Indeed, the point is that for each g1 ∈ S̃, we have that
g1h /∈ S̃, because otherwise we would get that h = g−11 g2 with g1, g2 ∈ S̃,

contradiction. So, indeed, S̃ · h is disjoint from S̃, thus proving that

S̃ ∪ {h}
contains at least twice as many elements as S̃ does.

Now, the above process shows that at each step the number of elements in S̃ at
least doubles itself and so, starting with |S̃| = 1 in at most log2(|G|) we arrive at
a sequence S which together with S−1 would generate the entire G. So, the size of
our generating sequence is at most

2

log(2)
· log(|G|).


