
PUTNAM PRACTICE SET 26: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let {an}n∈N be the sequence given by

a1 = 1 and an+1 = 3an +
[√

5 · an
]

for n ≥ 1.

Compute a2021.

Solution. We see that

an+1 − 3an = [
√

5 · an] <
√

5an < [
√

5an] + 1 = an+1 − 3an + 1.

So,

(3 +
√

5)an − 1 < an+1 < (3 +
√

5)an

and thus, after multiplying by 3−
√

5,

4an − 3 +
√

5 < (3−
√

5)an+1 < 4an,

which leads us to the following inequalities:

3an+1 − 4an <
√

5an+1 < 3an+1 − 4an + 3−
√

5.

Finally, since 0 < 3 −
√

5 < 1 and the elements of our sequence are integers, we
conclude that

[
√

5an+1] = 3an+1 − 4an.

This means that
3an − 4an−1 = [

√
5an] = an+1 − 3an

for all n ≥ 2. So, we have that our sequence satisfies the following linear recurrence
relation:

an+1 − 6an + 4an−1 = 0,

which means that the characteristic roots of our linear recurrence sequence are

3 +
√

5 and 3−
√

5

and since a1 = 1 and a2 = 5, we get that

an =

√
5 + 1

8
√

5
· (3 +

√
5)n +

√
5− 1

8
√

5
· (3−

√
5)n,

which happens to be precisely

an = 2n−2 · F2n+1,

where {Fk}k≥1 is the Fibonacci sequence given by

F1 = F2 = 1 and Fk+2 = Fk+1 + Fk for k ≥ 1.

Problem 2. Let n ∈ N. Find the number of pairs of polynomials (P (x), Q(x)) ∈
R[x]× R[x] satisfying the following two conditions:

• deg(P ) > deg(Q); and
• P 2(x) +Q2(x) = x2n + 1.
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Solution. Since deg(P ) > deg(Q), then the square of the leading coefficient
of P (x) equals 1, which means that we have two possibilities: either the leading
coefficient of P (x) equals 1, or it equals −1. Now, if (P (x), Q(x)) is a solution, then
also (−P (x), Q(x)) is a solution, which means that we may as well compute the
number of pairs of polynomials (P (x), Q(x)) satisfying the given two condition and
also for which P (x) is a monic polynomial, and then simply double that number of
pairs.

Also, we note that deg(P ) = n since deg(P ) > deg(Q) and deg(P 2 +Q2) = 2n.
So, noting that we assumed P (x) is monic, then we notice the following factoriza-
tion:

(P (x) + iQ(x)) · (P (x)− iQ(x)) =
n∏

j=1

(
x+ cos

(
(2j + 1)π

2n

)
+ i · sin

(
(2j + 1)π

2n

))
·
(
x+ cos

(
(2j + 1)π

2n

)
− i · sin

(
(2j + 1)π

2n

))
.

So, P (x) + iQ(x) and P (x)− iQ(x) are polynomials which are complex conjugates
of each other and so, P (x) + iQ(x) is a polynomial of degree n, which is a product
of n parenthesis from the right hand side of the above factorization, where each
parenthesis belongs to precisely one of the two possibilities

x+cos

(
2π(2j + 1)

4n

)
+i·sin

(
2π(2j + 1)

4n

)
or x+cos

(
2π(2j + 1)

4n

)
+i·sin

(
2π(2j + 1)

4n

)
for each j = 1, . . . , n. In conclusion, there are 2n such possibilities for P (x)+ iQ(x)
(and for each one of them, P (x) − iQ(x) is uniquely determined as a product of
the remaining n parenthesis from the left hand side of the above factorization),
which means there are 2n pairs of polynomials (P (x), Q(X)) such as above with
P (x) monic. (Note that (P (x), Q(x)) is uniquely determined by the pair
(P (x) + iQ(x), P (x)− iQ(x)).) Therefore, overall, there are 2 · 2n = 2n+1 possible
pairs of polynomials as desired.

Problem 3. Let k ∈ N. Prove that there exist polynomials P0, P1, . . . , Pk−1
(which may depend on k) with the property that for each n ∈ N, we have[n

k

]k
= P0(n) + P1(n) ·

[n
k

]
+ P2(n) ·

[n
k

]2
+ · · ·+ Pk−1(n) ·

[n
k

]k−1
,

where (as always) [x] is the integer part of the real number x.

Solution. For each integer n, we have that[n
k

]
=
n− j
k

,

for some integer j ∈ {0, 1, . . . , k − 1}. So, this means that for each n ∈ Z, we have
that ([n

k

]
− n

k

)
·
([n

k

]
− n− 1

k

)
· · · · ·

([n
k

]
− n− (k − 1)

k

)
= 0.

So, simply expanding the above identity and grouping terms containing the same
power of

[
n
k

]
leads to the construction of the polynomials P0, P1, . . . , Pk−1 as de-

sired.

Problem 4. Let f : R2 −→ R with the property that

f(x, y) + f(y, z) + f(z, x) = 0,
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for all real numbers x, y and z. Prove that there must exist another function
g : R −→ R such that

f(x, y) = g(x)− g(y),

for all real numbers x and y.

Solution. First we substitute: x = y = z = 0 in our functional identity and
notice then that f(0, 0) = 0. Next we substitute y = z = 0 and obtain that

f(0, x) = −f(x, 0).

Finally, substituting z = 0 and letting x and y arbitrary, we obtain

f(x, y) + f(y, 0) + f(0, x) = 0, i.e.

f(x, y) = −f(0, x)− f(y, 0) = f(x, 0)− f(y, 0),

thus proving that the function g : R −→ R given by g(x) := f(x, 0) satisfies the
desired property for our conclusion.


