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PROF. DRAGOS GHIOCA

Problem 1. A sequence {xn}n≥0 ⊂ R is called convex if 2xn ≤ xn−1 + xn+1

for each n ≥ 1. Let {bn}n≥0 ⊂ R+ be a sequence with the property that for each
positive real number a, we have that the sequence {anbn}n≥0 is convex. Then prove
that the sequence {log(bn)}n≥0 is also convex.

Solution. Let n ≥ 1 be given. So, we know that for any a ∈ R+, we have that

2anbn ≤ an−1bn−1 + an+1bn+1.

We let a :=
√

bn−1

bn+1
. Then the above inequality - after dividing by an - yields

2bn ≤
bn−1
a

+
bn+1

a
= 2

√
bn−1bn+1.

So, b2n ≤ bn−1bn+1, for each n ≥ 1, thus proving the convexity of the sequence
{log(bn)}n≥0.

Problem 2. Let P,Q ∈ R[x] be monic polynomials satisfying the relation:
P 2(x) = (x2 − 1)Q2(x) + 1 for each x ∈ R. Prove that P ′(x) = deg(P ) ·Q(x).

Solution. We first observe by equating the degrees of the two polynomials that
it must be that deg(P ) = 1 + deg(Q) and therefore,

deg(P ′(x)) = deg(Q(x)).

Now, differentiating the given identity of polynomials, we obtain

2P (x)P ′(x) = 2xQ2(x) + (x2 − 1) · 2Q(x)Q′(x)

which yields thar Q(x) | P (x)·P ′(x). However, the relation P 2(x) = (x2−1)Q2(x)+
1 yields that gcd(P (x), Q(x)) = 1 (i.e., they have no common roots), which means
that it must be that Q(x) | P ′(x). However, since Q(x) and P ′(x) have the same
degree, we conclude that there exists some constant c such that P ′(x) = c · Q(x);
finally, equating the leading coefficients in both polynomials P ′(x) and Q′(x) yields
that c must be deg(P ).

Problem 3. We partition the set {1, . . . , 2018} into 6 disjoint subsets A1, . . . , A6.
Prove that there exists some i ∈ {1, . . . , 6} and there exist x, y, z ∈ Ai (not neces-
sarily distinct) such that x = y + z.

Solution. Using the pigeonhole principle, we conclude that there exists some
set, say that it is A1, which contains at least 2018

6 > 336 elements, i.e., there exist
a1, . . . , a337 ∈ {1, . . . , 2018} such that ai ∈ A1 for each i = 1, . . . , 337. Without loss
of generality, we assume ai < aj for i < j. If the desired conclusion does not hold
for A1, then each of the distinct 336 numbers

a337 − a1, a337 − a2, · · · , a337 − a336 ∈ {1, . . . , 2018}
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must be contained in one of the sets Aj for 2 ≤ j ≤ 6. So, again without loss of
generality, using the pigeonhole principle, there exist at least 336

5 > 67 numbers of
the form a337 − ai for some i ∈ {1, . . . , 336} such that a337 − ai ∈ A2. In other
words, we have some

336 ≥ i1 > i2 > · · · > i67 ≥ 1

such that bj := a337−aij ∈ A2 for each j = 1, . . . , 67. Assume the desired conclusion
does not hold for the set A2; then each of the numbers

b67 − b1, b67 − b2, . . . , b67 − b66 ∈ {1, . . . , 2018}

cannot belong to A2. However, since for each k, we have

b67 − bk = aik − ai67 ,

we conclude that also none of the numbers b67 − bk can be contained in A1 since
otherwise the conclusion would hold for the first set. So, we continue our analysis
and then, by the pigenhole principle (without loss of generality), we derive the
existence of more than 66

4 > 16 elements of the form b67 − bk contained in A3. We
label these elements (in increasing order) as

c1, . . . , c17 ∈ A3

and note that each of the 16 numbers c17− cj for j = 1, . . . , 16 cannot be contained
in A3, A2 or A1, or otherwise the desired conclusion would hold for one of these
sets (because each of the numbers c17−cj are differences of two elements from each
one of the sets A1, A2 and A3). So, we continue our process and find that A4 must
contain at least 16

3 > 5 elements of the form c17 − ck for k ∈ {1, . . . , 16}. We let

d1 < d2 < d3 < d4 < d5 < d6

be all these elements and then note that d6 − di for i = 1, . . . , 5 is not contained in
either one of the first four sets, or otherwise the desired conclusion holds. Hence
these 5 elements must be contained in the last two sets which yields (by the pigeon-
hole principle) that A5 (say) must contain three elements e1 < e2 < e3 (of the form
d6 − di for some 1 ≤ i ≤ 5). But then negating the conclusion of our problem we
must have that A6 contains the elements e3− e1 and e3− e2. But then the element
e2− e1 cannot be contained in any of the 6 sets, which leads to a contradiction; so,
indeed, there must be one of the six sets which contains three elements of the form
x, y and x + y.

Problem 4. Let {Fn}n≥0 be the Fibonacci sequence, i.e.,

F0 = 0, F1 = 1 and for each n ≥ 2, we have Fn = Fn−1 + Fn−2.

Prove that each positive integer m can be written uniquely as a sum of non-
consecutive (distinct) elements of the Fibonacci sequence, i.e., there exists ` ∈ N
and there exist integers

1 < i1 < · · · < i` with ij+1 − ij ≥ 2 for each j = 1, . . . , `− 1

such that m = Fi1 + · · ·+ Fi` .

Solution. We prove our result by induction on m; the case m ≤ 3 is obvious as
Fi+1 = i for i = 1, 2, 3. So, assume now that the statement holds for all integers
m < M (where M is a positive integer larger than three) and next we show that it
must also hold for M .
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Since Fn → ∞ as n → ∞, then there exists a unique integer n0 ≥ 4 (note that
M > F3) such that Fn0 ≤ M < Fn0+1. Then let m := M − Fn0 ; if m = 0 then
we’re done, so from now on, we assume that m ≥ 1. Clearly,

m < Fn0+1 − Fn0
= Fn0−1 < Fn0

≤M ;

so, according to the inductive hypothesis, m can be written (uniquely) as a sum
of non-consecutive (distinct) elements of the Fibonacci sequence, i.e., there exists
some ` ∈ N and there exist non-consecutive integers

1 < i1 < · · · < i` < n0 − 1

(note that m < Fn0−1) such that

m = Fi1 + · · ·+ Fi` .

Then M = Fi1 + · · ·+ Fi` + Fn0
and also, note that n0 − i` ≥ 2, as desired.

Finally, we are left to prove that the above expression of a positive integer as
a sum of non-consecutive (distinct) elements of the Fibonacci sequence is actually
unique. In other words, we need to prove that if

Fi1 + · · ·+ Fi` = Fj1 + · · ·+ Fjk

where is+1 − is ≥ 2 for each s = 1, . . . , ` − 1 and also, js+1 − js ≥ 2 for each
s = 1, . . . , k− 1, then actually we must have that ` = k and that is = js for each s.
We obtain the desired assertion through induction on the total number of terms in
the above equality, i.e., induction on k+`. Clearly, the result follows when `+k = 2;
so, assume from now on that k+ ` > 2. If jk = i`, then we can cancel the last term
in both sums and then we are done by the inductive hypothesis. So, assume from
now on that i` 6= jk; without loss of generality, we may assume i` > jk. Then we
will derive a contradiction because we can show that for any m ∈ N, we have that

Fm > Fj0 + Fj1 + · · ·+ Fjk ,

where j0 = 0, jk ≤ m−1 and ji+1− ji ≥ 2 for each i = 0, . . . , k−1. Indeed, letting
jk+1 = jk + 1, it suffices to prove that

Fjk+1
> Fj0 + Fj1 + · · ·+ Fjk .

For this last inequality, we note that Fjk+1
− Fjk = Fjk−1 and that

jk − 1 > jk−1 > jk−1 − 2 ≥ jk−2 > · · · > j2 − 2 ≥ j1 ≥ 2

and so, the inequality
Fm > Fj0 + Fj1 + · · ·+ Fjk

follows easily by induction on k. Therefore, we obtain that once we have the equality

Fi1 + · · ·+ Fi` = Fj1 + · · ·+ Fjk

(where the sums contain non-consecutive terms in the Fibonacci sequence) then
the largest terms in both sums must be equal, i.e, i` = jk. Then the inductive
hypothesis on k + ` delivers the equality term by term in the above two sums, i.e.,
k = ` and for each s we must have that is = js. So, indeed, each positive integer m
ca be written uniquely as a sum of non-consecutive terms in the Fibonacci sequence:

m = Fi1 + · · ·+ Fi` where

2 ≤ i1 ≤ i2 − 2 ≤ i3 − 4 ≤ · · · ≤ i` − 2` + 2.


