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PROF. DRAGOS GHIOCA

Problem 1. Letm be a positive integer, let a be a positive real number and let θ be
a real number. Prove there exist m quadratic polynomials Q1(x), . . . , Qm(x) ∈ R[x]
such that

x2m − 2amxm cos(mθ) + a2m = Q1(x) ·Q2(x) · · ·Qm(x).

Solution. We could conclude our solution easily by noting that once a root ξ
exists for our polynomial with real coefficients, then also its complex conjugate ξ̄
is also a root and therefore, we could group all the complex (non-real) solutions
of our polynomial in pairs which leads to quadratics, while the remaining real
roots we arbitrarily group them in pairs, which also leads to quadratic polynomials
and therefore, we obtain m quadratic polynomials. However, this does not give a
complete answer about the actual coefficients of the quadratic polynomials Qi; we
can give such a complet answer as follows.

We have that cos(mθ) = eimθ+e−imθ

2 and so, letting z0 := eiθ, we have that

P (x) := x2m − 2amxm cos(mθ) + a2m = x2m − amxm
(
zm0 + z−m0

)
+ a2m

and so,

P (x) = (xm − amzm0 ) ·
(
xm − amz−m0

)
.

Therefore, letting ζ1, . . . , ζm be all the distinct m-th roots of unity, then we have
(note that the set of m-th roots of unity is closed under complex conjugation and
also, note that z̄0 = z−10 )

P (x)

=

m∏
j=1

(x− ζjaz0) ·
m∏
j=1

(
x− ζ̄jaz−10

)
=

m∏
j=1

(
x2 − 2aRe(ζjz0)x+ a2

)
.

Therefore, the desired polynomials with real coefficients areQj(x) := x2−2aRe(ζjz0)x+
a2.

Problem 2. For a matrix, the following operations are considered acceptable:

• change the sign of each entry on any given row;
• change the sign of each entry on any given column;
• switch two rows;
• switch two columns.
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Prove that we cannot use the above operations to transform the matrix
1 1 1 1 1
1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1
1 1 −1 1 −1


into the matrix 

1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 −1 1 1
1 −1 1 −1 1

 .

Solution. The two determinants are only changed in their sign by the given
operations. On the other hand, the first determinant is nonzero, while the second
determinant equals 0.

Problem 3. Find the infinimum of a2 + b2 over all the possible pairs (a, b) of real
numbers with the property that the equation

x4 + ax3 + bx2 + ax+ 1 = 0

has 4 distinct real roots.

Solution. Letting f(x) := x4 +ax3 +bx2 +ax+1, we note that x4 ·f
(
1
x

)
= f(x),

thus proving that the roots α1, α2, α3, α4 of f(x) have the property that grouping

them in 2 pairs, they are of the form
(
β, 1

β

)
. So, we write them as β1,

1
β1
, β2,

1
β2

and then write f(x) as the product of two quadratic polynomials

Qj(x) := (x− βj) ·
(
x− 1

βj

)
for j = 1, 2.

So, f(x) = (x2 + γ1x + 1) · (x2 + γ2x + 1) for some distinct real numbers γ1 and
γ2 (note that they are distinct since β1 6= β2 because the roots αi are all distinct).
Furthermore, because the βj ’s are real numbers, we have that the γj ’s must be real
numbers satisfying the inequality |γj | > 2 (note that the inequality is strict because
the αi’s are distinct.) Now,

x4 + ax3 + bx2 + ax+ 1 = (x2 + γ1x+ 1)(x2 + γ2x+ 1)

yields a = γ1 + γ2 and b = γ1γ2 + 2. So,

a2 + b2 = (γ21 + γ22) + (6γ1γ2 + γ21γ
2
2 + 4).

Clearly, for any fixed real number ζ := γ1γ2, the smallest quantity for a2 + b2 is
attained when γ1 = γ2 = ζ1/2 if ζ ≥ 0, while if ζ < 0, then the minimum is attained
when γ1 = |ζ|1/2 = −γ2 (or conversely). Furthermore, a2 + b2 is minimized when
ζ < 0 and so, we have that

a2 + b2 ≥ 4ζ + ζ2 + 4 = (ζ + 2)2 > (−4 + 2)2 = 4

because ζ = γ1γ2 and we know (based on our assumption that ζ < 0) that γ1 > 2
while γ2 < −2 (or vice-versa). So, the infimum of a2 + b2 equals 4 because we can
choose γ1 arbitrarily close to 2 and choose γ2 arbitrarily close to −2.
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Problem 4. Let k be a positive integer. Find the set of all tuples (a1, . . . , ak+1)
of non-negative integers satisfying the following properties:

• a1 = 0.
• |ai − ai+1| = 1 for i = 1, . . . , k.

Solution. Let M be the set of all these sequences. We let N be the set of all
sequences of integers {ai}1≤i≤k+1 satisfying the properties:

• a1 = 0 and ak+1 ≥ 0.
• |ai − ai+1| = 1 for i = 1, . . . , k.

In other words, we do not impose the condition that ai ≥ 0 for i = 2, . . . , k for the
sequences in N ; so, in particular, M ⊂ N .

Now, we consider a sequence {ai}1≤i≤k+1 which lies in N \M . Then there exists
a smallest integer i such that ai < 0. From the definition of the sequence, we must
have that ai = −1 (since the difference between consecutive elements of the sequence
is 1, in absolute value). We consider the following function ϕ : N \M −→ N given
by

ϕ ({aj}1≤j≤k+1) = {bj}1≤j≤k+1, where

bj = −aj for 1 ≤ j ≤ i and bj = aj + 2 for i+ 1 ≤ j ≤ k + 1.

Letting P ⊂ N be the set containing all sequences from N with the additional
property that ak+1 ≥ 2, we claim the following.

Claim. The function ϕ restricts to a bijection between N \M and P .
Proof of Claim. First we see that ϕ is injective. We see from the definition of

ϕ that if two sequences {aj}1≤j≤k+1 and {a′j}1≤j≤k+1 are mapped into the same
sequence {bj}1≤j≤k+1, then there exists a unique least integer i with the property
that bi = 1 and therefore, for both sequences, we have the same index i as being
the least integer for which ai < 0, respectively a′i < 0. Then the definition of ϕ
yields that aj = a′j for 1 ≤ j ≤ i and also for i+ 1 ≤ j ≤ k+ 1. Thus, ϕ is injective.

Next, we see that indeed the image ϕ(N \M) is contained in P because bk+1 =
ak+1 + 2 and ak+1 ≥ 0.

Now, conversely: given any sequence {bj}1≤j≤k+1 ∈ P , we simply consider the
first integer i such that bi = 1; note that such an integer must exist since bk+1 ≥ 2.
Then, we define the sequence {aj}1≤j≤k+1 ∈ N \M , as follows:

aj = −bj for 1 ≤ j ≤ i and aj = bj − 2 for i+ 1 ≤ j ≤ k + 1.

We immediately see that ϕ ({aj}1≤j≤k+1) = {bj}1≤j≤k+1, thus showing that ϕ is
also surjective, which finishes the proof of our Claim.

The Claim above yields that |N \M | = |P | and so,

|M | = |N | − |N \M | = |N | − |P | = |E|,
where E ⊂ N is the set of sequences {ai}1≤i≤k+1 which satisfy the following prop-
erties:

• a1 = 0.
• |ai − ai+1| = 1 for 1 ≤ i ≤ k.
• ak+1 ∈ {0, 1}.

Now, letting εi := ai+1−ai for 1 ≤ i ≤ k, we see that the set E is in bijection to the

set of all k-tuples (ε1, . . . , εk) ∈ {−1, 1}k with the property that
∑k
i=1 εi ∈ {0, 1}.

In other words, we know that in the set of k-tuples (ε1, . . . , εk) we have precisely
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[k/2] numbers equal to −1, while the other numbers equal 1. So, the cardinality of

P (and therefore, the desired cardinality of M) equals
(

k
[k/2]

)
.

Problem 5. Prove that for each positive integer n, we have

2n ·
n∏
k=1

sin

(
kπ

2n+ 1

)
=
√

2n+ 1.

Solution. We note that for each integer n ≥ 0, there exists a polynomial Qn(x) ∈
R[x] of degree 2n+1 such that sin ((2n+ 1)x) = Qn (sin(x)); for example, Q0(x) =
x, while Q1(x) = 3x − 4x3. Furthermore, we know that the roots of Qn(x) are

sin
(

2kπ
2n+1

)
for k = 0, . . . , 2n. So, we can write Qn(x) = x ·Pn(x), where Pn(x) has

the roots ± sin
(

2kπ
2n+1

)
for k = 1, . . . , n; furthermore, these roots of P (x) can be

written as ± sin
(

kπ
2n+1

)
. Thus, letting an be the leading coefficient of Pn(x) and

also letting a0 be the constant term of Pn(x), we get that the product

pn :=

n∏
k=1

sin

(
kπ

2n+ 1

)
satisfies (−1)n · p2n = a0

an
. So, we need to compute a0 and an since then the formula

would follow (note that we know that pn > 0).
We claim that an = (−1)n ·4n, while a0 = 2n+1. First, we note that a0 = Pn(0).

Now, we note that cos((2n + 1)x) = cos(x) · Rn(sin(x)), where Rn(x) ∈ R[x] is a
polynomial of degree 2n. Then we have

Qn(x) = Qn−1(x) · (1− 2x2) + 2x(1− x2) ·Rn−1(x)

and so,

(1) Pn(x) = Pn−1(x) · (1− 2x2) + 2(1− x2) ·Rn−1(x).

Hence Pn(0) = Pn−1(0) + 2Rn−1(0). On the other hand, we know that P0(0) = 1
(since P0(x) = 1) and we prove that Rn(0) = 1 for all n. This follows because

(2) Rn(x) = Rn−1(x) · (1− 2x2)− 2x2Qn−1(x),

and so, Rn(0) = Rn−1(0) for all n ≥ 1. So, we’re left to prove that an = (−4)n.
Again, this follows from (1) by combining it with (2) because the first equation
yields

an = an−1 · (−2)− 2bn−1,

where bn−1 is the leading coefficient of Rn−1(x), while the second equation yields

bn = bn−1 · (−2)− 2an−1.

We start with a0 = 1 and a1 = −4, while b0 = 1 and b1 = −4 and so, inductively,
we derive that an = bn = (−4)n, as desired.

Problem 6. Let P be a set of 5 distinct prime numbers and let B be the set of all
15 numbers obtained as a product of two numbers from P , not necessarily distinct.
We partition B into 5 disjoint sets C1, · · · , C5, each one of them containing precisely
3 elements from B, and moreover having the property that for each i = 1, . . . , 5,
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there is a prime dividing each of the 3 numbers from the set Ci. How many possible
partitions of B into 5 such subsets are there?

Solution. Each Ci corresponds to some prime pj(i) such that each element of Ci
is divisible by pj(i); furthemore, j(1), · · · , j(5) is a permutation of {1, . . . , 5} since if
the same prime pj divides the elements of two sets Ci1 and Ci2 , then it would mean
there exist 6 elements of B divisible by pj , contradiction. So, we may assume (since
we deal with a partition), that each element of Ci is divisible by pi for i = 1, . . . , 5.
Hence, p2i ∈ Ci for each i = 1, . . . , 5. There are then 6 possibilities for the other
two elements of C1; by symmetry, we assume

C1 = {p21, p1p2, p1p3}.
We know that p2p3 ∈ C2 or p2p3 ∈ C3; again, by symmetry, we assume p2p3 ∈ C2.
Then there are 2 options for the remaining element of C2; let’s assume C2 =
{p22, p2p3, p2p4}. We have so far 6 · 2 · 2 = 24 options and we’ll prove that with
our choices so far, C3, C4 and C5 are prescribed. Indeed, p23 ∈ C3 and we know
that p1p3, p2p3 /∈ C3, which means that C3 = {p23, p3p4, p3p5}. Then p24 ∈ C4 but
p2p4, p3p4 /∈ C4; so, C4 = {p2p, p4p1, p4p5}. Finally, p25 ∈ C5 but p3p5, p4p5 /∈ C5,

and therefore C5 = {p25, p1p5, p2p5}. So, indeed there are 24 possible partitions
(note that two partitions are not counted as being different if they contain the
exact same 5 sets Ci but listed in a different order).


