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PROF. DRAGOS GHIOCA

Problem 1. Let p > 3 be a prime number. Prove that at least one of the numbers
from the following list:

3

p2
,

4

p2
,

5

p2
, · · · , p− 2

p2

can be written as a sum 1
x + 1

y for some positive integers x and y.

Solution. Let i be a divisor of p + 1 other than 1, 2 or p; such a divisor exists
since p + 1 is a composite number larger than 4. Then let ` := p+1

i ; this is also a
positive integer. Then

1

p`
+

1

p2`
=
p+ 1

p2`
=

i

p2
,

as desired.

Problem 2. If r > s > 0 and a > b > c > 0, prove that

arbs + brcs + cras ≥ asbr + bscr + csar.

Solution. We divide by cr+s and let x := a/c and y := b/c; then x > y > 1
(while r > s > 0). The inequality reduces to

xrys + yr + xs ≥ xsyr + ys + xr

and therefore, letting t := r/s > 1, while u := xs and v := ys, we need to prove
that

utv + vt + u > uvt + v + ut.

This translates into proving the inequality

ut − 1

u− 1
>
vt − 1

v − 1

for all u > v > 1 and all t > 1. The above inequality is obvious using that the
function f(u) := ut is concave up for u > 1 and t > 1; note that the two sides
of the above inequality represent slopes of secant lines after connecting the point
(1, 1) with the points (u, ut), resp. (v, vt) on the graph of the function f .

Problem 3. Find all f ∈ C[x] with the property that for each x ∈ C, we have
f(x)f(2x2) = f(2x3 + x).

Solution. Assume f is not identically equal to 0 or 1; then f cannot be a constant
polynomial; so, it must have finitely many complex roots. We start with an easy
claim.

Claim 1. If α ∈ C is a root of f(x), then also 2α3 + α must be a root of f(x).
Indeed, f(α) = 0 and since f(x)f(2x2) = f(2x3+x), we get that f(2α3+α) = 0,

as claimed.
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The next claim is also simple.
Claim 2. Let z0 ∈ C and let z1 = 2z30 + z0.

(A) If |z0| > 1, then |z1| > |z0|.
(B) If |z0| = 1, then |z1| ≥ 1 with equality if and only if z0 = ±i.

For the proof of Claim 2, we note that if |z0| ≥ 1 then

|z1| = |z0| · |2z20 + 1| ≥ |z0| ·
(
2|z0|2 − 1

)
≥ |z1|

with equality if and only if |z0| = 1 and moreover, 1 and 2z20 have arguments
which are opposite angles, i.e., the argument of z20 must be π, which yields that
the argument of z0 must be either π/2 or 3π/2. So, the equality is achieved only if
z0 = ±i, as claimed.

The next claim is one of the two crucial observations.
Claim 3. There is no complex root of f(x) of absolute value larger than 1.
Indeed, if there were such a root z0, then letting g(z) := 2z3 + z, we have that

z1 := g(z0) is also a root of f(x) of absolute value larger than |z0| (according to
Claims 1 and 2) and inductively, for each n ∈ N we have that zn := g◦n(z0)
must be a root of f(x) and all these roots have increasing absolute value, which
contradicts the fact that f has only finitely many roots. So, indeed, f(x) has no
root of absolute value strictly larger than one.

The other key piece of our argument is the following claim.
Claim 4. f(0) 6= 0.
Assuming that f(0) = 0, we let 1 ≤ k ≤ d := deg(f) be the multiplicity of

the root z = 0 for f ; so, f(x) = xk · h(x) where h(0) 6= 0. Then the equation
f(x)f(2x2) = f(2x3 + x) yields

x3k · 2kh(x)h(2x2) = xk · (2x2 + 1)kh(2x3 + x)

and thus, h(2x3 + x) · (2x2 + 1)k = x2k · 2kh(x)h(2x2), which contradicts the fact
that h(0) 6= 0 (and that k ≥ 1). So, indeed, f(0) 6= 0.

Now, Claim 4 yields that for the polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ R[x]

we have that a0 = f(0) 6= 0. On the other hand, since f(0)2 = f(0) (according
to our hypothesis), then we must have that a0 = 1. Furthermore, using again the
identity f(x)f(2x2) = f(2x3 + x) (but this time not for a specific value, such as
we did above when we plugged in x = 0, however this time looking at the leading
coefficient in the above identity of polynomials), we get that

ad · ad2d = ad2d and so, ad = 1.

In conclusion, the product of all the roots of f(x) must have absolute value equal
to 1. Now, Claim 3 yields that all roots have absolute value at most one and
therefore, each root must have absolute value exactly one (since otherwise their
product would not have absolute value 1). Now, for each root z0 of f(x), we
have that z1 := 2z30 + z0 is also a root of f(x) (by Claim 1) and then using that
|z0| = 1 = |z1|, Claim 2 yields that z0 = ±i. Finally, because f ∈ R[x], then the
multiplicity of the root i in f(x) is the same as the multiplicity of the root −i and
so, d = 2k for some k ∈ N and we must have that f(x) = (x2 + 1)k. Finally, we
check that this polynomial f(x) (for any k ∈ N) satisfies the desired polynomial
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identity:

f(x)f(2x2)

= (x2 + 1)k ·
(
(2x2)2 + 1

)k
= (x2 + 1)k · (4x4 + 1)k

= (4x6 + 4x4 + x2 + 1)k

=
(
(2x3 + x)2 + 1

)k
= f(2x3 + x),

as desired.

Problem 4. Let n ∈ N and let Sn = {1, . . . , n}. Assume the set M ⊆ Sn × Sn

satisfies the following properties:

• if (j, k) ∈M then 1 ≤ j < k ≤ n; and
• if (j, k) ∈M then for each i ∈ Sn, we have that (k, i) /∈M .

What is the largest possible cardinality of the set M?

Solution. We let

A := {i ∈ Sn : there exists j ∈ Sn such that (i, j) ∈M}
and

B := {j ∈ Sn : there exists i ∈ Sn such that (i, j) ∈M}.
By the hypothesis, we have that A and B are disjoint subsets of Sn. Also, for
each (i, j) ∈ M we have that i ∈ A and j ∈ B. Therefore, #M ≤ #A · #B and
clearly, the maximum possible is attained when A ∪ B = Sn and #A = #B or
|#A −#B| = 1. So, depending whether n = 2k, or n = 2k + 1, we have that the
maximum number of elements in M is either k2, or respectively k2 + k. Also, we
note that we can indeed construct sets M with such cardinality by considering

M = {1, 2, . . . , k} × {k + 1, k + 2, . . . , 2k}
if n = 2k, while if n = 2k + 1, then we can simply take

M = {1, 2, . . . , k} × {k + 1, k + 2, . . . , 2k + 1}.


