PUTNAM PRACTICE SET 6

PROF. DRAGOS GHIOCA

Problem 1. Find the largest possible integer which is the product of finitely many positive integers whose sum equals 2018.

Problem 2. Let $P \in \mathbb{R}[x]$ be a polynomial with the property that P(x) > 0 for each positive real number x. Then prove that there exist polynomials $Q_1, Q_2 \in \mathbb{R}[x]$ with all coefficients nonnegative, such that $P = \frac{Q_1}{Q_2}$.

Problem 3. Prove that there exist infinitely many $n \in \mathbb{N}$ with the property that 7^n contains in its decimal expansion 2018 consecutive digits equal to 0.

Problem 4. Let $a \in (0,1)$ be a real number. We consider the function $f : (0,1] \longrightarrow (0,1]$ given by:

f(x) = x + 1 - a if $0 < x \le a$ and f(x) = x - a if $a < x \le 1$.

Prove that for any interval $I \subseteq (0,1]$, there exists a positive integer n such that $f^{\circ n}(I) \cap I \neq \emptyset$.

Problem 5. Find (with proof) all possible function $f : \mathbb{N} \longrightarrow \mathbb{N}$ with the property that f(n+1) > f(f(n)) for each $n \in \mathbb{N}$.