PUTNAM PRACTICE SET 2

PROF. DRAGOS GHIOCA

Problem 1. Let $k \in \mathbb{N}$ and let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{N}$. We know that $gcd(a_i, b_i) = 1$ for each i = 1, ..., k. We let M be the least common multiple of the numbers b_1, \ldots, b_k and also, we let D be the greatest common divisor of the numbers a_1, \ldots, a_k . Then prove that the greatest common divisor of all the numbers $\frac{a_i \cdot M}{b_i}$ for $i = 1, \ldots, k$ is equal to D.

Problem 2. Let $P \in \mathbb{Z}[x]$ be a polynomial of degree deg $(P) \ge 1$. We let n(P) be the number of all integers k for which $(P(k))^2 = 1$. Prove that $n(P) - \deg(P) \le 2$.

Problem 3. Let a_1, \ldots, a_5 be real numbers such that

$$a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 = 1.$$

Prove that $\min_{1 \le i < j \le 5} (a_i - a_j)^2 \le \frac{1}{10}$.

Problem 4. Let n be a positive integer. Prove that the number

$$\sum_{k=0}^{n} \binom{2n+1}{2k+1} \cdot 8^k$$

is not divisible by 5.

Problem 5. Let n be a positive integer, let a_1, \ldots, a_n be positive real numbers, and let $q \in (0, 1)$ be a real number. Prove that there exist n real numbers b_1, \ldots, b_n satisfying the following properties:

- $a_k < b_k$ for each $k = 1, \ldots, n$;
- $u_k < b_k$ for each n = 1, ..., n, $q < \frac{b_{k+1}}{b_k} < \frac{1}{q}$ for k = 1, ..., n 1; and $b_1 + \dots + b_n < \frac{1+q}{1-q} \cdot (a_1 + \dots + a_n)$.

Problem 6. For each $n \in \mathbb{N}$, we let Q_n be a square of side length $\frac{1}{n}$. Prove that in a square of side length $\frac{3}{2}$ we can arrange all the squares Q_n such that for any $m \neq n$, the squares Q_m and Q_n are placed so that there are no interior common points for both Q_m and Q_n .