Quenched Multiscale Renormalization

ONLINE OPEN PROBABILITY ScHOOL (OOPS) 2021

Augusto Teixeira
2021

Instituto de Matematica Pura e Aplicada Rio de Janeiro - Brazil

Based on a joint work with Hilario, S& and Sanchis



Overview of the course

Renormalization in Percolation

Quenched renormalization:
good and bad boxes

Quenched renormalization:
intensity of defects



Renormalization in Percolation



Overview of this lecture

Renormalization in Percolation
e Motivation
e Introduction to Percolation
e Renormalization in percolation

e Dependent case



Why renormalization in percolation?

Why renormalization?

e Very powerful technique

e Make intuitive descriptions rigorous
e Applies to many models

e It is pretty

Why percolation?

e Simple model
e Full of interesting phenomena
e Nice open questions

e Excellent testbed for renormalization

Harry Kesten
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Bernoulli percolation

e Introduced by Broadbent and Hammerley in 1957.
e Very simple model.

e Extensively studied.

e Fundamental open questions.

B o

e Consider Z? with edges between nearest neighbors.

e Fix p € [0,1].

e Every edge is declared open with probability p and closed w.p. (1 — p).
e This is done independently for every edge.



Phase transition

Consider:

[0 <+ o0] := there exists an open path from 0 to infinity. (1)

Its probability 6(p) is weakly monotone in p:
0(p) := P[0 < o] (2)
A beautiful path-counting argument (Peierls) shows that:

e G(p) =0 for p small;
e 9(p) > 0 for p close to one.

Phase transition! 7
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Phase transition

Consider:

[0 <+ o0] := there exists an open path from 0 to infinity. (1)

Its probability 6(p) is weakly monotone in p:
0(p) := P[0 < o] (2)
A beautiful path-counting argument (Peierls) shows that:

e O(p) =0 for p small; + We will prove this. And more!
e 9(p) > 0 for p close to one.

Phase transition! 7



Open questions

Define p. = sup{p € [0, 1];6(p) = 0}.
(Harris + Kesten) proved that for Z2:

® p.=1/2;
e O(p) is continuous in p.

p
Pe 1

There are still many question that remain open concerning this model:

e Is O(p) continuous for dimensions 3,4, ..., 107
e How does 0(p) behave as p approaches p.?



Multi-scale Renormalization

What we are going to prove?
Theorem
There exists py € (0,1) such that for p < pg
P, |0 4> 00| =0.
Actually
P, {0 “ 88,,} < exp{—n®1},
forall n> 1.



Multi-scale Renormalization

What we are going to prove?

Theorem
There exists py € (0,1) such that for p < pg

P, |0 4> 00| =0.
Actually
P, {0 “ 88,,} < exp{—n®1},
forall n> 1.
Obs:

e Counting paths are easier and give better bounds (pp and on decay)
e Renormalization is much more robust



Outline of the proof

Steps of the proof:

A
B

Chose scales

Define “bad event”*

D
E

)
)
C) Prove “cascading property”
) Recursive inequalities™*

)

Perform triggering

*Looks easy but it is hard
**Looks hard but it is easy

10



Step A (Choose scales)
Let L, = 9%, for k > 0.
Mk = {k} X Zz.

Also {Dm}mem, is a paving of 72 with boxes of side L.

Step B (Define bad events)

¢

Dm

5/77

px = P(Ep,), for some m € M.
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Step C (Cascading Property)
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If m S Mk+1,
En C |J Em N Emy, with mq, mp € M.

my,my

Consequently
Pri1 < 27*p;.

12



Step D (Recursive inequalities)

We want to prove that
pr < exp{ — Lg'l}, for every k > 0.

Induction step - Suppose true for k:
Pk+1 Cascading
exp{— Lk+1 — exp{— Lk+1
Induction 1
exp{— L2+1}
= o7t exp{ (2L01 — Lk+1)}

= 2texp{ - (221 - 91N}

27 p3

T exp{ 2Ly}

L,

since 901 ~ 1.24 ...

13



Step E (Triggering)
Still need for some k > k,

pr < exp{—L}'}.
Pick p small enough.

Conclusion

P[0 <+ oo] < P[By, +» 93By,] < exp{—L'} — 0.

Advantages
e Not restricted to percolation
Quantitative results

Robust to microscopic changes

Robust to dependence

Implicit condition (3).

14



Steps of the proof:

A
B

Chose scales

Define “bad event”

D
E

)
)
C) Prove “cascading property”
) Recursive inequalities

)

Perform triggering

15



Dependent percolation

s ® Model:
HiH g
i - e {Xi}i>o is a PPP with intensity u
v o {R}i>0 i.i.d. radii P[R: > r] < r=20
2 ﬁ% e Add edges inside B(X;, R;)

Percolation is dependent, but satisfies

B |L
/
Ll.5
L| A
P(AN B) < P(A)P(B) + L71°, (%)



Step A (Choose scales)
Let Lo = 100,
Ly~ Li'5

Entropy problem?

(actually | L9%]L)

17



3L,

Consequently

3L 4
pk+1 S ( Lk+1> Sup ]P(EITU m EI'HQ)

my,my

k
<3*3(p+ ;19).



Step D (Recursive inequalities)

We want to prove that

pr < L8, for every k > 0.

Induction step - Suppose true for k:

Cascadin
Pk+1 & 1 405/ 2 ,-10
5 = e 3hptL
k+1 k+1

Induction

£ 083 (157 £12)
471242 —-15
= 3 (o)

k
1

Y
lAé‘

)

since 15 > 14.
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Step E (Triggering)

Still need for some k > k,

Pick u small enough.

pr < exp{—L}'}.

20



Step E (Triggering)
Still need for some k > k,
pr < exp{—Ly'}.

Pick u small enough.

Approximate independence is uniform over u <1 !l

20



Step E (Triggering)
Still need for some k > k,

pr < exp{—L%1}.

Pick u small enough.
Approximate independence is uniform over u <1 !l

Conclusion
P[0 ¢ 00] < P[By, > 93B;,] < LB —0.

20



Thank you!

21



Quenched renormalization:
good and bad boxes



Overview of this lecture

Quenched renormalization:
good and bad boxes

e Columnar defects

Negative results

Environment: Good-box, Bad-box

Percolation

What comes next

22



What are we exercising?

Let us flex our technique:

e Quenched renormalization
e Crazy scales

e Crazy cascading property

23



Inhomogeneous Percolation

No percolation Percolation

High porosity

Difficulty to represent different media.

24



A different model

A: g T 2 x3 Ty Ts Xe

& & & & & &

(a) A typical layered rock

(b) A new model

Our model for graph G:

The set of vertices of G is Z2 ;
Horizontal nearest neighbor edges: add them all;

Given integers 0 = xg < x1 < Xxp < ...
Vertical nearest neighbor edges:
add the ones that lie in some line {x;} x R, for i > 0.

25



How we chose x;’s?

Pick &1,&, ... i.i.d integer random variables (tail of defects).
Let i
Xi=> ¢ (5)
i=1
This is a Renewal Process.
Observation
It is clear that our graph G is a subgraph of Z? (with n.n. edges)
Therefore, for p < 1/2 we have §(p) =0 (thus pc > 1/2).
Question

e Is p. < 1 (phase transition)?
e How the above question depends on the distribution of £7
26



Simulation

27



Previous work

Theorem (Bramson, Durrett, Schonmann)

Suppose that there is some ¢ > 0 such that
P(& > k) < ek, for every k large enough, (6)

then p. < 1 for a.e. realization of X;'s.

Observations

e BDS was originally stated for the contact process.
e Our article is very inspired by BDS (questions and proof).
e Hoffman: horizontal lines removed as well (more on that later).

Kensten, Sidoravicius, Vares: oriented case.

Duminil-Copin, Hildrio, Kozma, Sidoravicius: near-critical.

28



Main results

Theorem (Hilario, Sa, Sanchis, T.)

Suppose that for some n > 1 we have E({") < oo. Then p. <1 for a.e.
realization of X;'s.

Theorem (Hilario, Sa, Sanchis, T.)

Suppose that for some n < 1 we have E({") = oco. Then p. =1 for a.e.
realization of X;'s.

Observations

e Interpreting the “thickness of defects”.
e What happens if E(§) = o0?
e What if E(§) < 007

29



Absence of percolation

Suppose E(£") = oo for some 1 < 1.

Fixing n < n’ < 1, consider the rectangle v

[0, i) X [O, exp{il/"/}). (7)

With reasonable probability:

e There will be some & > i1/7.
e The percolation will not survive this long corridor.

End with Borel-Cantelli.

30



An alternative definition

We can alternatively study

Y, = 1{X; = h; for some i}, for n > 0. (8)

We then change the first jump to y to make the renewal process stationary:

(Yo, Ya,...) 2 (Y}, Yign,...). (9)

31



Decoupling

m m+n
A < " >

Lemma

Let & > 1 be an i.i.d, aperiodic, integer-valued sequence of increments
satifying

E(£'7¢) < oo, for some 1 > 1. (10)
Then, there is ¢ = c(&, €) such that for any pair of events
Aco(Y;0<i<n) and Be€o(Y;i>m+n), (11)
we have that
P(AN B) = P(A)P(B) £ cn “. (12)

32



Recall our 5 steps!!!

Steps of the proof:

A
B

Chose scales

Define “bad event”

D
E

)
)
C) Prove “cascading property”
) Recursive inequalities

)

Perform triggering

33



Multiscale renormalization

Choosing appropriately Ly > 1 and v > 1 we define

Liy1 = L)Y ~ L], for k> 1. (13)

We also pave Z with the intervals
If = [iLk, G+ 1)L), for j >0 (14)
Cover [/*! with blocks at scale k
k+1 k+1

L IO l 1 ' 1 | 14 [
/1 L I L L B
0 Ly Ly 2Lk 41 3Lk 41 4Ly 1 5Lk 41

34



Good and Bad intervals

Step B (Define bad events)
Scale 0: no good column.
Good LIO Bad 2|L° Good 3|L° Good 4|L° Good Lll .

I I I I 1 L4

101000O0OT1O0O0110O00O0111010

o T o

35



Good and Bad intervals

Step B (Define bad events)
Scale 0: no good column.
Good LIO Bad 2|L° Good 3|L° Good 4|L° Good Lll .

0
1
I I I I I L
01 01000OT110O01T1O0O0O0111010

Scale k + 1: two non-consecutive bad blocks at scale k.

Good . Good Bad Good Bad

35



Typical boxes are good

Define
Pk = P[Ik is bad}

Lemma

There exists o > 0 such that
Pk S L_aa (15)
for every k > 0.

36



Typical boxes are good

Define
Pk = P[Ik is bad}

Lemma

There exists o > 0 such that
Pk S L_aa (15)
for every k > 0.

Step C (Cascading Property)

36



Step D (Recursive inequalities)

We want to prove that
pr < L%, for every k > k.

Induction step - Suppose true for k:

Cascading 1 L 2
P/j; < — ( kH) sup P[Bad(ml)ﬂBad(mz)]
Lk+1 Lk+1 L my,my

S
Indlztion 2L2(7_1)+’YO‘_2&/\6

k> ko
<,
since we pick 2o < e and 2 — v > @

37



Step E (Triggering)

Choose Ly large.

38



Step E (Triggering)
Choose Ly large.

It is actually tricky because ky grows !!!

38



Step E (Triggering)
Choose Ly large.

It is actually tricky because ky grows !!!

Conclusion

Pll is bad] = pi < L;* — 0.

38



Step E (Triggering)
Choose Ly large.

It is actually tricky because ky grows !!!

Conclusion

Pll is bad] = pi < L;* — 0.

Now we need to deal with percolation.

Thus the name “Quenched Renormalization” .

38



Percolation

Step A (Choose scales)

Vertical scales (fix 1 € (1,1))
Ho =100 and Hyy1 = 2[exp(Li 1 )|Hx, for k > 0. (16)

Step B (Define bad events)
Crossing events: C,, and D,,

(U +2)Hk
U+ DHc | >

JHk

39



Percolation

Step A (Choose scales)
Vertical scales (fix 1 € (1,1))

Ho =100 and Hjy 1= 2(exp(L’,f+1)] H, for k > 0. (16)
Step B (Define bad events)

Crossing events: C,, and D,,

39



We want to prove
Lemma

There exists pg, ko, 5 > 0 such that for p > pg
max{rg, sk} < exp{ — Lf}, for all k > ko.

40



We want to prove
Lemma

There exists pg, ko, 5 > 0 such that for p > pg
max{rg, sk} < exp{ — Lf}, for all k > ko.

We actually do this in two steps:

Lemma (R-Lemma)
If max{ri, sk} < exp{—Lf}, then
M1 < exp{ — Lfﬂ}-
Lemma (S-Lemma)
If max{r, sk} < exp{—Lf}, then

s <em{ — 1L},

40



R-Lemma

Step C (Cascading Property)
If C,, fails, no crossing in any corridor (exp{L|_, ;} many of them).

Hiy1

6H

4H

\./

I
2Hy !

/Ok+l Ilk+l
If a corridor is not crossed, one event below fails

4H,

41



Step D (Recursive inequalities) for R-Lemma

Induction step -
Cascadi B - p
LR S aSC% ing ;(1 _ (1 B rk)LZ (1 B sk)LZ )exp{ ‘o)
{~Li) (-7 3
exp k+1 exp e

Induction

< exp{lL +1}( (1- 2LZ_1 eXp{—L’f}
= exp{lL +1}(2L7_1 exp{—Lf})eXp{Lfﬂ}
k Iarge {Lﬁ }2_eXP{Lk+1}

>)ex”“‘iﬂ}

k>ko
< 1,

42



Step D (Recursive inequalities) for R-Lemma

Induction step -

Cascading 1 —1 —1y exp{L} .}
Tk < 7(1_(1_@)@ (1—sk)LZ ) k+1
{-Ly 1} {~Ly 1)
exXpr—Lyks eXPr— Lkt
Induction

_ exp{L} .}
exp{L’f+1}(1 — (1 —2L] ! exp{—L’f})) o

= exp{Lﬂ_H}(ZLv—l exp{_Lf})exp{Lfﬂ}
k Iarge {Lﬁ }2— eXP{Lk+1}

k>ko
<"1,

That was easy, right 1?17
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Step D (Recursive inequalities) for R-Lemma

Induction step -

r Cascading 1 v-1 -1\ exp{L} 1}
kiﬂﬁ L — (1 — (1 — rk)Lk (1 - sk)LZ ) s
17 3 exp{—L? .}
exp{—Lj p k+1
Induction exp{LZ'H}

exp{Lyyy (1 (- 20 " exp{~L}}))
— exp{L"
— exp{Lf+1}(2Lz lexp{—Lf}) PiLics}

K Ia:rge exp{Lf+1}27 eXp{Lr+1}

k>ko
<"1,

That was easy, right 1?1?

Sorry
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What was wrong?

We forgot the bad boxes.

re:= max PO((Cn))

p
.k gk
AT

good

A good box k 4+ 1 can have two bad boxes inside!

43



Second chance

If C,, fails, no crossing in any corridor (exp{Lj.,;} many of them).

Hicya

6H

4Hy

_\_/,‘

2Hy

k+1 k+1
IO /1

If a corridor is not crossed, one event below fails

4H,

It 44



Step D (Recursive inequalities) for R-Lemma

Induction step -

p>1/2 exp{Lfﬂ}

rk+1
exp{—L},,}

IN

exp{Ly,, }(1 278071

= exp {Lfﬂ — 2_8Lk_1eukl+1}

= exp {Lf-u - 278L“71eukw}

k large
< 1,

because yu > 1.
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Step C (Cascading Property)

o o o o ) o o
(e} o] (e} (e} o (e} (e}
o o o o ) o o
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o o ® ® ) o o
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(e} o] (e} (e} o (e} (e}
"~
D i S R e e
I I I I I I I
e B s i e e E
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| | | \ | |
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0:0:0:0:0:0:0:0
0:0:0:0:0:0:0:0
0:0:®@:©®:0:0:0:0
0O:0:0:®:®:0:0:0
0.0:0:0:0:0:0:0
0:0:0:0:0:0:0:0

Step C (Cascading Property)




0:0:0:0:0:0:0:0
0:0:0:0:0:0:0:0
0:0:®@:©®:0:0:0:0
0O:0:0:®:®:0:0:0
0.0:0:0:0:0:0:0
0:0:0:0:0:0:0:0

Step C (Cascading Property)




0:0:0:0:0:0:0:0
0:0:0:0:0:0:0:0
0:0:®@:©®:0:0:0:0
0O:0:0:®:®:0:0:0
0.0:0:0:0:0:0:0
0:0:0:0:0:0:0:0

Step C (Cascading Property)




0:0:0:0:0:0:0:0
0:0:0:0:0:0:0:0
0:0:®@:©®:0:0:0:0
0O:0:0:®:®:0:0:0
0.0:0:0:0:0:0:0
0:0:0:0:0:0:0:0

L e o B R

Step C (Cascading Property)
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Step D (Recursive inequalities) for S-Lemma

Induction step -

Cascading
skiﬂﬁ < eLf+1 Z P[“dashed”, blocking path of length n]
exp{_Lk-H} n

Induction
< elen Z exp{Li 1} 8" exp{—Lf}”/7
—~ ————

7-1 "
nLy starting point # of paths probability of path

< ep{ly, +L1"} Y 8exp{-L}"T
nZLZ_1

< Cexp{LD+1]")85  exp{—L01]7Y/7)

k>ko

< 1

since B+~ —1>max{y8,yu} (B <1, but close).
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Final comments

Where to go next?

e Good/bad boxes are well suited for large defects
e Use up a lot of vertical space
e If we remove horizontal lines, the argument breaks

48



Thank you!
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Quenched renormalization:
intensity of defects




Recalling last lecture

In the last lecture:

e Defects on x-axis only,

e Large defects,

e Defects could be considered catastrophic,
e Needed a lot of vertical room.

50



Overview of this lecture

Quenched renormalization:
intensity of defects

o Model
e Environment: Intensity of defects
o Percolation: good boxes

e How to cross a trap

51



The definition of the model

The model

e Two sequences ¢!, €2 of i.i.d. Geo(p) random variables
e Stretch the lattice horizontally (by &%) and vertically (by £2)

1000100000100100000010010001

el 2 2 € & &

Perform Bernoulli percolation p on this stretched lattice.

52
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History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For p > 0 small and p < 1 large, there is
percolation.
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History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For p > 0 small and p < 1 large, there is
percolation.

Answer 2005
[Hoffman] Indeed
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History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For p > 0 small and p < 1 large, there is
percolation.

Answer 2005
[Hoffman] Indeed

Theorem (Hoffman)
There exists p > 0 and p < 1 such that

P5[0 ¢ 00] > 0.

Hoffman's proof follows a dynamic renormalization.
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History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For p > 0 small and p < 1 large, there is
percolation.

Answer 2005
[Hoffman] Indeed

Theorem (Hoffman)
There exists p > 0 and p < 1 such that

P5[0 ¢ 00] > 0.

Hoffman's proof follows a dynamic renormalization.

We will sketch a proof of this result using a static renormalization.

Very inspired by Hoffman.
54



Outline of the proof

Here is a quick guide

e Qur 5-step guide to success for the environment
e Qur b-step guide to success for percolation on good boxes
e How to traverse obstacles

55



Important observation:

e We look at the values of & only

o ¢} refers to “east edge”

o &2 refers to “north edge”

e Edge is open with probability
p§i+1

&
&
&
£
&

& &g od

56



Important observation:

e We look at the values of & only 5§
&
3
o &2 refers to “north edge” &
S

o ¢} refers to “east edge”

e Edge is open with probability
pSitt et e el el el

Step A (Choose scales)
Ly = 500%, for k > 0.
As before
I} = [j500, (j + 1)500) N Z
These are nested intervals

k41 k41
1y Iy

L
0 Ly Ly 2Lk 3Lk 4Ly 11 5Ly 11
56



Environment

We want to “grade” defects:

e For each interval Ijk, we associate a defect ij =0,1,...
e An interval with H = 0 is called good, otherwise bad.

Scale 0 -
o [p=1,
- 1f = U}
° HJ =¢;.

57



Environment

We want to “grade” defects:

e For each interval Ijk, we associate a defect ij =0,1,...
e An interval with H = 0 is called good, otherwise bad.

Scale 0 -
o Lp=1,
o =),
o Hf =¢;.
Scale k+1 -
0, if all sub-intervals are good
ijH = H}Z —1, if jo is the only bad sub-interval

Mo HE+20L if jo,...,ji are the bad intervals

57



Step C (Cascading Property)

Define
pr = P[If is bad] = P[HE > 1].
Lemma
For p small enough
pr < L 10,
for every k > 0.
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Step C (Cascading Property)
Define
pr = P[If is bad] = P[HE > 1].

Lemma
For p small enough

pr < L'°,
for every k > 0.

Typical boxes are good:
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Step C (Cascading Property)
Define
pr = P[If is bad] = P[HE > 1].

Lemma
For p small enough

pr < L 10,
for every k > 0.

Typical boxes are good:

Here we assume this single bad box is far from the extremes!
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Step C (Cascading Property)

Define
pr = P[If is bad] = P[HE > 1].

Lemma

For p small enough
Pk < L;107
for every k > 0.

Typical boxes are good:

Here we assume this single bad box is far from the extremes!

And other simplifications along the way!
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We actually prove
Lemma

For p small enough

P[Hé( _ h} < 500—10k—20h

Trying to prove more makes it easier (induction).

59



We actually prove
Lemma

For p small enough

P[Hé( _ h} < 500—10k—20h

Trying to prove more makes it easier (induction).

Scale 0 -

P[HY = h] = P[¢o = h] = p" < 500"
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We actually prove
Lemma

For p small enough

P[Hé( _ h} < 500—10k—20h

Trying to prove more makes it easier (induction).

Scale 0 -

P[HY = h] = P[¢o = h] = p" < 500"
Scale k + 1 - Roughly

Z ﬁ 500~ 10k—20h

ho,...,hy;  1=0
h=>" hj—20L

< ... < 50O 10k—20h

P[HE™ = h]

IN
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Good rectangles

Retangles
RE: = [iLy, (i + 1)Lk) x [jL, (j + 1)Lg)

60



Good rectangles

Retangles
RY; = [iLk, (i + 1) L) x [jLx, (j + 1)Lk)
We call them good if
Hf =Hf =0
Observation
There exists p > 0 so that

]P)[R(IB,O) is good for all kK > 0] >0

Just notice that

Z L—lO ZSOO_IOk
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Definition of filled boxes

Scale 0

e Lo=1,
0 o . .
Rij = (1,J),
It is filled if its north and east edges are open,
P[R0 filled] = p.
Its cluster is C; = {(7,J)}

Scale 1

e all good sub-boxes are filled, except for at most one
e all clusters of filled sub-boxes are connected (we call it C;‘J)
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Percolation

A filled box and its cluster Cffj in gray

Define
ry = sup IP’[R,-/‘J is not fiIIed].

Rk
w,RI.J is good
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Proof of percolation

Lemma
There exists p < 1 such that

re < 500*2"*100, for every k > 0.

Proof of main theorem.

Assuming the lemma above:

P[R(kom filled Vk > 0|Rfs o) good Vk > 0| > 0.

Just notice that ), re < 1.
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Proof of percolation

Lemma
There exists p < 1 such that

re < 500*2"*100, for every k > 0.

Proof of main theorem.

Assuming the lemma above:

P[R(kom filled Vk > 0|Rfy 5) good Vk > 0| > 0.

Just notice that ), re < 1.

All we need to prove is the lemmal!
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We really wanted to have

but there are bad columns.

rer1 < 500% r,f,
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We really wanted to have

rer1 < 500472,
but there are bad columns.

Define
Sk = sup IP’“either R(ko 0) Or R(kz_o) is not fiIIed} U [C(ko,o) & C(kz,o)ﬂ
Hio,0=H(z.0)=0; 7 /
HE =1

(1,0)

We call this a “crossing a trap”.
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Lemma
Suppose that for k > 0,

re < 5007247100 apd s, < 5002K80

Then
fe1 < 500 2(k+1)~100

Proof.
If RK+1 is not filled:

e there are two good but non-filled sub-boxes,
e there are two disjoint non-crossed traps.
ree1 < 500%r2 4 1000252
< 2. 5004 4k—160 50— (k+1)-100
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Crossing defects!
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Crossing traps

We need to cross H = 1.
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Crossing traps

We need to cross H = 1.

For this we need to cross all values of H.
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Crossing traps

We need to cross H = 1.

For this we need to cross all values of H.

cross defect

67



Definition

S is called regular if

e S only intersects good intervals: SN Ijk +0 = Hf =0
e S is spread out: S intersects at most 400 sub-intervals of any interval.

Motivation:

e crossing in a bad line is hard.
e packed armies are inefficient.

Observation

Every filled box contains a regular set of size 400X at its right face.
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Simple algebraic intuition:

Regular army becomes regular army
of size 400K+ (h=1)/2 defect H = h of size 400k
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Simple algebraic intuition:

Regular army becomes regular army
of size 400K+ (h=1)/2 defect H = h of size 400k

Making this rigorous

Vi = sup ]P’[survivors do not contain a regular army of size 400"},
h,S,w

where the suppremum is taken over

e h>0,
e w such that H(column) = h,
e S regular with |S| > 400k+(h—1)/2
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Last step of the proof

vk is stronger than s, !1!

Control on rx and vy = control on rx and s, = control on ryyq.
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Last step of the proof

vk is stronger than s, !1!

Control on rx and vy = control on rx and s, = control on ryyq.
Control over v:
Scale 0 -

e Subsets of regular sets are regular,
e Surviving army is Bin (400(h—1)/2 ph+1),
e If pis large, P[no survivors] < 50079, for every h > 1.
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Last step of the proof

vk is stronger than s, !1!

Control on rx and vy = control on rx and s, = control on ryyq.
Control over v:
Scale 0 -

e Subsets of regular sets are regular,

e Surviving army is Bin (400(h—1)/2 ph+1),

e If pis large, P[no survivors] < 50079, for every h > 1.
Lemma
Suppose

re < 5007 2k—100, and v, < 50072k
then
Vi1 < 50072k, .



Two cases to consider

single bad sub-box multiple bad sub-boxes
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Many bad sub-boxes

In this case

L
h:Zh,+2OL.

=0
We start with
|5| _ 400k+1+(h—1)/2

— 400h0/2+20

« 400KFL+(hi++h —1)/2+20(L—1)
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Many bad sub-boxes

In this case
L i NE
h= ) N N
> i+ 20L K H
= : ]
We start with 5 S| |
|5| — 400k+1+(h—1)/2 [: [:
| S5l
— 4Q0ho/2+20 S ¥ -+
« 400k +1H+(hth —1)/2+20(L—1) N 51
One can split S into S;,..., S, with | st
° |Sj| > 400k+(ho—1)/2y E 51[;
o |J > 400(m+-+h—1)/24+20(L~1) hio hio
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Many bad sub-boxes

In this case
L i NE
h:Zh,+2OL. N N
= : i
We start with 5 S| |
|5| — 400k+1+(h—1)/2 [: [:
| S5l
— 4Q0ho/2+20 S ¥ -+
« 400k +1H+(hth —1)/2+20(L—1) | s
One can split S into S;,..., S, with | st
° |Sj| > 400k+(ho—1)/2y E 51[;
o |J > 400(m+-+h—1)/24+20(L~1) hio hio

We use v, and repeat this for each defect.

With high probability we end up with 400% points.
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Single bad sub-box

In this case
h=hy—1
Then
S| = 400k +1+(h-1)/2
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Single bad sub-box

In this case
h=ho—1 | EEEEN 3
Then ET::::: ;E;:::: H=1
|S| = 400k+1+(h-1)/2 | Smmam & 5
Use the control on v, and get with N EEEEE
high probability N N
|5'] > 400%+1/% i BSass
after the defect. = TR
Finally we use ry and sy to recover n ; “““ E
7] > 400541 (whp) e el
" =
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Main takeaways:

e There is a “story-telling” in renormalization.
e Beautiful algebraic interplay between environment and process.
e There are many directions to go from here.
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Main takeaways:

e There is a “story-telling” in renormalization.
e Beautiful algebraic interplay between environment and process.
e There are many directions to go from here.

“What is a sequence of i.i.d. Bernoulli random variables?”

Vladas Sidoravicius
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Thank you!
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