The *-Edge Reinforced random walk, Bayesian
statistics and statistical physics

Pierre Tarrés, NYU Shanghai, CNRS,
Courant Institute for Mathematical Sciences

Open Online Probability School, 12-15 July 2021



Outline |

Pélya urn (Eggenberger and Pdlya, 1923)
Definition
Notion of exchangeability
Results and statistical view
Statistical view of Pdlya urn: consequences
How to find the limit law?

Edge-Reinforced Random Walk (ERRW): introduction
Definition
Simulations
Partial exchangeability (Diaconis-Freedman, 1980)
Statistical view
How to find the limit measure?
"Magic formula” for ERRW
How to show the limit measure is correct?
Early results 1986-2009

ERRW, VRJP and statistical physics
ERRW <— VRJP (Vertex Reinforced Jump Process)



Outline I
VRJP: three timescales
Partial exchangeability of VRJP
Bayesian approach to find limit measure of VRJP
VRJP <— random Schrodinger operator
Applications : recurrence/transience

*-Edge-Reinforced Random Walk (*-ERRW)
Definition and remarks
*_ERRW: partial exchangeability
*-ERRW: statistical view
*_ERRW: results
Correspondence *-ERRW «+— *-VRJP
Limiting manifold and measure
*-VRJP: Random Schrddinger version



Pdélya urn: definition

| 4

Introduced by Eggenberger and Pélya in 1923: “Uber die
Statistik verketteter Vorgange”, i.e. “On statistics of linked
behaviors”.

Urn with balls of two colors: and red.
Initially a, resp. b > 0 balls of , red color.
., R, numbers of balls of , red color added until n-th

draw, Gp = Ry = 0.

Reinforcement rule: pick one ball at random and put it back
together with another ball of same color:

a+ G,

IP’(Gn+1:Gn+1‘Gk>R’<k<n):a+G +b+ R,
n n

D Q.




The notion of exchangeability (de Finetti)

Definition
Let (X;)i>1 random process taking values in {0,1}. Then X is
called exchangeable if, for all n € N and o € S,,,

L ((Xg(,’))lgign) = L ((Xi)1<i<n) -

Theorem (de Finetti)

If (Xi)i=1 is exchangeable, then there exists a random variable
a € [0,1] such that

1 n
; E Xl —>I14)OO .
i=1

Conditionally on «, (X;)i>1 is an i.i.d. sequence of Bernoulli
random variables with success probability o, which we call P%.



Exchangeability of Pdlya urn

Let P2 be the law of the Pdlya urn starting from a, resp. b > 0
balls of , red color.
If a€ R, neN, define

(a,n):a...(a+n—1):I:I(a+i):

i=0

M(a+n)
ra ’

where [ is the Gamma function, and

_ [(a)r(p)
C(a,b) = TGatb)

Lemma
Let (Gn)n>0 be a Pdlya urn, and set X, := G, — Gp,_1. Then
(Xn)n>1 is exchangeable and, if p=>."_; €, g =n— p, then

PP (Xi =€, 1<i<n)= e JCF(/;’ 1;)+ 2.



Pdélya urn: statistical view

» Given sequence of i.i.d. Bernoulli random variables with
unknown random success probability «, how can we estimate
a?

P Bayesian approach: choose prior distribution on random
variable .

> Let £(a, b) be the law of the random variable o under P22,

» If prior on « is £(a, b), then by definition

[’awﬁ(a,b)(’pa ((]success at time n)n)l)) = IP)a’b((Gn_ Gn—l)n}l))a

where (Gp)nen defined from Pdlya urn above.



Statistical view of Pdlya urn: consequences

» Hence, if the prior on a is L(a, b), then the posterior
distribution conditioned on p successes and q failures is
L(a+ p,b—+ q), as the distribution of « for the Pdlya urn
starting from a + p green balls and b + g red balls.

» The prior and posterior are in the same family of probability
distributions, and are thus called
» (Gp, Rp) is a sufficient statistic for « at time n:
» Informally: no other statistic that can be calculated from the
sequence (Gk)k<n provides any additional information as to
the value of the parameter a.
> Formally: given statistical model {P, : a € (0,1)}, where P,
is the law of i.i.d. sequences with success probability «,
Po((Gk)k<n|Gn) does not depend on o (Exercise).
» |t is a minimal sufficient statistics: there is no sufficient
statistics that needs less information.



Pdlya urn: how to find L(a, b)? (I)
> Assume that the law of a under P#? has a smooth integrable
density measure p®? w.r.t. Lebesgue measure on [0, 1].

» Under P#®, the posterior distribution conditioned on p
successes and q failures is L(a+ p, b+ q).

> But, if p=3_"_1€¢, g=n—p, then

_ e )xP(1— x)e
Pa7b(X/ = €j, 1 < i < n)

P*P (o € [x,x + dx] | X = €|1<i<n) dx

01— X)TC(a,)
N C(a+p,b+q) '

» It follows that

xP(1 —x)9C(a, b) a
Ca+p,b+q) ")

~(Gteste) (&) oo

P*HP(x) =




Pdlya urn: how to find £(a, b)? (II)

Let
at+p

n=p+a S =t

Then, using Stirling’s approximation

[(2) ~zo00 V2127712677,

(a+p)a+p—1/2(b+ q)b+q—1/2
C(a+p,b+q) ~p,g—o0 V2T (at bt n)a+b+n—1/2

~p,g—o0 \/ﬂ(nﬂ(n)(l - ﬁ(n)))_l/2 n,@(n)(ﬂ(n))na

where
n3(x) = xP(1 - x)1P.



Pdlya urn: how to find L(a, b)? (lll)

Therefore

a+p,b+q(x)

Lo9PIC@b) 1 e sm()
p.g—oo  x3(1 — x)b \/ﬂ(ﬁ( )(1 —B(n))) (Uﬁ(n)(ﬁ(n))>.

Now, for all g € (0,1),

log <m> = (log (;); (1-7)log <1jﬂ>
(x = 5)

= - o((x—B)3
="2-p) ")

¥




Pdlya urn: how to find L(a, b)? (IV)

We conclude that

1 a,b C b
lim / Spa+p,b+q(y) dy =1= 907 (x)C(a, b)
0

n—o0, B(n)—x

using that
¢127\/ ST = 50 [ e <_2B(n)(qzi B(H))> de =1
Therefore

N B X"*l(l _ X)bfl
¥ b(X) - C(a, b)



Edge-Reinforced Random Walk (Coppersmith and
Diaconis, 1986)

» G = (V, E) non-oriented locally finite graph
» a. >0, e €E, initial weights

e Edge-Reinforced Random Walk (ERRW) (X,) on V : Xy = iy
and, if X, =i, then

Z;ijp(n)

P I S ) = 5 )

where

n
Ziij(n) = aij+ Z DXy X ={i}-
k=1

» a. small: strong reinforcement

» a. large: small reinforcement



The ERRW

S

A simulation due to Andrew Swan.



The Mixing Measure of ERRW

S

A simulation due to Andrew Swan.



The notion of partial exchangeability (Diaconis and
Freedman, 1980) (1)

Definition

Let (Yn)n>0 a random process on a graph G = (V/, E). It is called
partially exchangeable (resp. reversibly partially exchangeable) if,
for any nearest-neighbor path v = (y0,...,7v,) on V,

P[(Yo,---, Yn) = (70,---,7n)]

only depends on its starting point and on the number of crossings
of directed (resp. undirected) edges by ~.



The notion of partial exchangeability (Diaconis and
Freedman, 1980) (I1)

Theorem (Diaconis and Freedman, 1980)

If (Yn)n>o0 is a.s. recurrent (i.e. Y, = Yy infinitely often) and
partially exchangeable (resp. reversibly partially exchangeable, and
each edge is traversed is traversed in both directions with
probability 1) then it is a mixture of Markov chains (resp.
reversible Markov chains), i.e.

£(y) = / P() du(w).

Here P¥ denotes the Markov Chain with transition probability
w(i,j) from i to j. If P“ is reversible, then there exists
x = (xe) € (0,00)E such that

w(i,j) = w(i,)) —', ZXU Let PX = P+,

Jrvi



Edge-Reinforced random walk (ERRW): partial
exchangeability

Let P20 be the law of ERRW with initial weights a = (a¢)ece and
starting from iy, also denoted by ERRW (ip, a).

Lemma
The ERRW is reversibly partially exchangeable: more precisely,
P?(Xo = gy - - -, Xn = in = Jo)
_ HeEE(ae’ne) _ 7(’.073)
HiEV 2Vi_5jo(i) <w’ Vi — 6_]0(’)) 7(107 Oé)

where ne (resp. v;) is the number of crossings (resp. visits) of edge
e (resp. site i) by the path (ig, ..., in), & = (3¢ + ne)eck, and
ey T (A(ai +1 = 6;(i))) 2225 ()

[Tece M(ae) ’

v(ip,a) =



Edge-Reinforced random walk (ERRW): partial
exchangeability

In the last equality we use that
n; = Z nj = 2V,' - (5,’0(1') - 6jo(i)
ji
so that

- (i) = G m) =00 3= (i),

By the Theorem of Diaconis and Freedman (1980), since
ERRW ! (io, a) is reversibly partially exchangeable it is a mixture of
reversible Markov chains PX.

Let L(ip,a) be the mixing measure of x under P2,



Edge-Reinforced random walk (ERRW): statistical view

» Given reversible Markov Chain P, with transition probability
x,-j/x,- from i to j, with unknown random vector x, how can we
estimate x?

» Bayesian approach: assume prior on x is 12 and run Markov
Chain P*, then law is the one of ERRW P-2 by theorem
above.

» Hence, the posterior distribution after n first steps is given by
Z(n),Xn
1 :
» Thus prior and posterior are conjuguate priors.

» (Diaconis and Rolles, 2006) Z(n) is a minimal sufficient
statistic for the model, also provide method of simulation of
the posterior.



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (1)
Let us do Bayesian statistics again: assume that ;02 has an

integrable smooth density ©? w.r.t dx = HeeE\{eO} dxe (for
arbitrary eg € E) on the simplex £1 = {>_ xe = 1, x¢ > 0}, then

P22(X € [x,x + dx]|Xo = fo, ..., Xo = in = Jo)

_ ™2(x) dx [Tece xe
- POA(Xo = oy Xn = in = Jo) [, "0 ()
1

Therefore

i i H Xg® ’7(./.0’@)
P (x) = () —recEe T
[Tievx™ ™ (o, 2)
-1

SOiO’a(X) H E ae H EXae"l‘ne )
= . = a; ea,o() = a[fnifé»o(i) ’Y(JO,C“)

’7(’073) J
[Tievx ° [Ticv x;




Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (II)

Again we can show, using Stirling's approximation, that, letting
n=7 g B3=a/n, wehave

- N E-1 /oI VI-IE [Tece VPe 1
V(JO’OZ)%GE’%%OW Ve B,  (na(B)"

where 5
HeeE Ye ¢

Bi/2"
[Tievy;

Therefore, if n — oo, 8 — x, cpfb’a(y) is of the order of

ns(y) =

aj=0j, (1)

p2(y) Ilievy; 2 Yio /1=, o IVI-IE] (%’(y)>n
(o, ) HeeEyeane—l/z\/;\f v2r ns(B))
(2.1)




Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (I1)

Now

W _ 1o T
og (120)) = =3 9y = )+ O(ly ~ A1)

where

Zﬁ(yu y'> :2zy02'_ v
Y BI BIJ Bi‘

ijij~i B {ij}eE ieV

Show that, if Lo = {3} xe =0}, dy = [ecp\ (o} Ve

/co o <_Qﬁ )dy_ (H \/@> (H ﬁ) 'E+t/%|£| g

ecE iev

where D(y) = > 7c7 I lect Ye, T set of (non-oriented) spanning
trees of G.



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (1V)

This implies by (2.1) that

1= lim /L P (y) dy

n—oo, B—x€L
a,-+1

IO P AN

T i0a) D) g

which yields
. ] H Xae—l
©"?(x) = Cy(io, a) /X Lea,ﬂa
[Tiev % ?
with




Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem
» (Ze(n)nen converges a.s. to a random vector X = (Xe)ecE
» Conditionally on x, ERRW is a reversible Markov chain P>
with jump probability x;j/x; from i to j, xi =, _; Xik.
» X has the following density w.r.t to measure [ [ .. E\{e} dXe ON
the simplex {Ve € E, x¢ >0 ) . cpxe =1

) H Xae—l
C(io, a), /XioLe;a_\/ D(x).
[Lievx®"

Recall that

(io, a) [Licy T (3(ai + 1 — 65(i))) 22 %)
’}/ 1 73 = ,
’ HeeE (ae)




Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

and
23/2—|V|

—Wa D(y) = Z HYea

where T is the set of (non-oriented) spanning trees of G.

» Obtained by Keane and Rolles (2000) by different means:
probability of a path P20(Xy = iy, ..., X, = in = jo) only
depends on the local time, compute the probability of
reaching a given vertex jo and local time (ne)ece, by summing
over all possible paths

» By-product of that approach: obtain an interpretation of the
spanning trees which appear in the formula, as last/first exit
trees of the walk. Interesting connection with work of Angel,
Crawford and Kozma (2014) on recurrence of ERRW.

» As far as | know, the approach in this lecture for finding the
limit measure is new.



How to show the limit measure is correct? (Sabot-T. 2021,
for *-ERRW) (1)

Let ¢ be a smooth function on £; whose support is compact and
has empty intersection with Ugcg{x : x. = 0}. Let, for all j € V,
a € (0,00)E,

W(i,a)(w)—/ o(y)u"(dy)

Ly

and prove that

E(o(Y)) = W(io, a)(¢)-

The process (X,, Z(n)) is a Markov process on V x (0,00)f with
generator

Lg(i,a) = O;J (FG,a+ 1y j) — Fir @) .

j~i

We have
LV = 0. (Exercise)



How to show the limit measure is correct? (Sabot-T. 2021,
for *-ERRW) (II)

This implies that W(X,, Z(n))(¢) is a martingale, and therefore
that
V(i a)(p) = B (W (X0 Z(n))())

The next aim is to prove that

lim W(X,, Z(n))(¢) =¢(Y) as. ,

n—oo
where Y = lim,_,c Z(n)/n, which will imply the result by
dominated convergence, which can be shown by an asymptotic
technique as before.



How to show the limit measure is correct, if we know it is
a probability measure?
» Sample x according to 102 as in the formula.

» Conditionally on x, probability of a path (i, ..., int1) is

ne+6{lnl+1}( )
HeEE Xe !

[Ticv "
where ne (resp. v;) is the number of crossings (resp. visits) of
edge e (resp. site i) of (ip,...,in).
» Hence the annealed probability of a path is
ne+5’n’n+1 (e)

HeeE e io,a _ 7(i07a)
’07 Vi d,LL (X) - . )
IEV X 7(’”4—17 o+ 6inin+1)
where a = (ae + Ne)ecE-
» Thus conditional probability (ig, ..., in+1) knowing (o, . .., in)

’Y(in> a+ 6{i,,,i,,+1}) . a{in,in+1}

’Y(in+17 Oé) ain




Early results on Edge-Reinforced random walk ('86-'09)

» Using partial exchangeability (Diaconis and Freedman'80)
ERRW is a Random Walk in Random Environment (RWRE)

» Explicit computation of mixing measure:
Coppersmith-Diaconis '86, Keane-Rolles '00
» Pemantle '88: recurrence/transience phase transition on trees:

» Root the tree at iy for simplicity.

» Between two visits to each vertex, once an edge is crossed the
walk comes back through it.

» Hence, independently at each vertex, Pélya urn with initial
number of balls ((aU + 5{J father of ,-0})/2)jN,-.

» Hence the environment is independent Dirichlet at each vertex
iz Random Walk in (independent) Random Environment
(RWRE)

» Merkl Rolles '09: recurrence on a 2d graph (but not Z?)



ERRW and statistical physics: ERRW <— VRJP (1)

Let (We)ece be conductances on edges, W, > 0.
VRIP (Ys)s>0 is a defined by Yy = iy and,
if Ys =i, then, conditionally to the past,

Y jumps to j ~ i at rate W; ;L;(s),

with <
LJ(S) =1 +/ ]]_{yu:j}du.
0

Proposed by Werner and first studied on trees by Davis, Volkov
('02,'04).



ERRW and statistical physics: ERRW «— VRJP (lI)
Random conductances (We)ecr

Theorem (T. '11, Sabot, T. '15)

ERRW (X,)nen with weights (ce)ece
VV/ 7
w VRJP (Yt)e=0 with conductances We ~ T () indep.

(at jump times)

» Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T'. 11)



Proof of ERRW «— VRJP (1)
Rubin construction : continuous equivalent of ERRW

Similar to continuous-time version of discrete-time Markov chain

Clocks at each edge:
» ((f)ecE ien collection of i.i.d variables, Exp(1) distributed.

1

P> Alarms at each edge e € E, at times

k
¢

=
Process (X;)¢>0 starting from i € V:
> Clock e only runs when (X;)¢=0 adjacent to e.

> Alarm e rings = X, traverses it.
Then (Xe)ter, (at jump times) Ia:w (Xn)n>o0-



Proof of ERRW «— VRJP (Il)
Yule process: a result of D. Kendall ('66)

Forallee E, t >0, let
Nf := nb. of alarms at time t for e.
Then 3W, ~ Gamma(ae) s.t., conditionally to W,
N€ increases between t and t + dt with prob. W,e" dt.

Consequences on Rubin construction:
» Let T,(t) time spent in x € V at time ¢t

> Then, conditionally to W, e € E, and to the past < t,
if X; = x, X jumps to y ~ x between t and t + dt with prob.
Wi eTx(fHTy( ) d(Tx(t)) = Wiy L,(t)d(Lx(t)), where



VRJP: three timescales (I)

Jump rates from i to j

» Initial timescale process Y, with local time L :
S
VV,"LJ'(t)./With Lj(S) = 1+/O ]l{yu:j}du.
» Reversible timescale process Z, with local time T:
S
V\/UeT"(t)—"_Tj(t),With TJ(S) = / ]l{Zu:j}du'
0

» Exchangeable timescale process X:



VRJP: three timescales (II)

Proof: Change "clocks” at all sites:

> Z: Tj=loglj orL;= e'i (already appears in the proof of
ERRW +— VRIJP)

> X: =17 -1 0rL;=\/1+¢.

Then
W’JLJdL’_EW”szE idT;.



VRJP X conditioned on past up to time t

Lemma

VRJP(ip, W) X, conditioned on a path up to time t with local
time s = (s;)jcv and end position jo, is a VRIP(jo, W*) after time
t, with time change (, with

g,‘—S,‘
1+s

Wi = Wyiv1+siy/1+s, (=

Proof.
After that conditioning and after time t, VRJP(W, ip) X jumps
from / to j at a rate

1 1+74; 1 1+s;
Z Wi 7Jd€i:*VVi‘ J
2 f\/1+£,- 2 N\ 11

1 1+ £
= 5|/1/,-J-\/ﬁs,-,/1+sjd£j- = L del.




VRJP: Probability of a given path (Sabot-T.,2016)

Notation. g A h... st in = jo, t denotes the event that, at time

t, the walk spends time in [vp, vp + dvp] at site iy, then jumps to vq
. until it jumps to i, = jo, at which it spends the rest of the time

until time t, and let s; be the total time spent at / at that time.

Lemma

oW (io WS = o, t)
- exp ( Z{’J}EE VV’J (V 1 + Si V 1 + SJ - 1 ) ]j Iklk+1 d
Ligjo V1 +si -




VRJP: Probability of a given path:proof (1)

Let, for all wERv, ieV,t>0,

> Wywiy, Gi(t) =[]+ 4() 72

{ijeE JF#

First note that the probability, for the time-changed VRJP X, of
holding at a site v € V on a time interval [t1, to] is

3~ Wy VT
em( A 1+a(f0

J~Xe

= exp (— /t1 d (H\/W))) :




VRJP: Probability of a given path:proof (I1)

Second, conditionally on (X, u < t), the probability that X jumps
from X; =i to j in the time interval [t, t + dt] is

1+6(8) . _ G

VV’..
/ Gi(t)

Therefore the product of jump probabilities is

ﬁ WXilei GXi(ti) dti = ﬁ WXi_IXi dth

i=1 i (1) 12

where we use that G, (t;) = Gx(ti+1), since X stays at site x; on
the time interval [t;, tiy1].



Consequence of exchangeability of VRJP

Theorem
VRJP(io, W) X is a mixture of Markov Jump Processes (MJP) P"
with jump rate from i to j

%V‘/Ue”’_”"-

Proof.

The probability of a given path for X only depends on the local
time, initial and final position, which implies partial exchangeability
(Zeng, 2013).

Hence

—o0 2

.1 1 1
U = tl|m —log ¢;(t) — Vi ;/tILnQO 3 log ¢;(t)
J

exists and conditionally on U, the jump rate from i to j is
WielUi=Yij2. O



Bayesian approach to find limit measure of VRJP (1)

» Assume that the law p©" of U under P" has a smooth
integrable density measure ¢®"Ww.r.t. Lebesgue measure du
on the simplex Lo = {u: Y g ue = 0}.

> Note that the probability of iy 2 i ... 5" i, = jo, t under PY

IS
-1
1 uj—u; uj, —u; 1 Wiiia
exp | — Z.EWUe iTtis; | e o H Tdv,-k.
INGY k=0
» Notation [(Ui)iGV] = (U,’ — ‘Tl/| Zjev Uj) _—
1

» After conditioning on path up to time t, we have new weights
and new potentials

1
Wi = Wiiv1+si\/1+5s,U =U— {2 log(1 —I—s)] :



Bayesian approach to find limit measure of VRJP (1)
Hence
POV (U € [u,u+dullip 3 7y... 5 = o, t)
oW (u)exp (— i jei 3 Wigets _”’5i> ettt

B T Vitsds
P (_ e Wi (VIFsiy/I+s— 1)) =

o o 2]

Therefore
s log(1
@Jo,W (u— [og(;—s)}) (3.1)
oW (u)exp (— D ijei %V‘/Ue”f_”"si) etto "

) []vi+s.
P <_ e Wi (VIFsiy/T+s— 1)) =



Bayesian approach to find limit measure of VRJP (11l)

Applying the result for s s.t. 1+ s; = €Y, i € V, yields

P (0) = W (u) exp Zvvu el U —1) | et (3.2)

INGY)
On the other hand, let
nw,n(u) = exp Z Wiei™"(h —1)
INGYI

Then, if s; = h—1 and jo = iy, we deduce again from (3.1) that

0. Wh () — LW (, nw n(u) v 1
P (4) = ()<17W7h(0)>h |




Bayesian approach to find limit measure of VRJP (1V)

Now ()
nw,n\u 3
I ’ =—(h-1 @)
og (222163 ) = ~(h = 1)(@(e) + O([ul)),
where 1
Qu) = 7 3 (= u)®
ijiri
Using that
(2rs~1)(IVI-1)/2
_ du =
L ootsa =S
where
D(W u) = Z H W{,’J}eui-‘-w"
TeT {ij}eT

we can compute ¢©"(0) since
(27r)(\vlfl)/2

VI\/D(W,0)

1= [ @) du = (0
Lo



VRJP <— SuSy hyperbolic sigma model in QFT (1)
Fixed conductances (W,)ece, G finite (Sabot-T.'15)

The measure /2" (du) has density on Lo — {(u;). > u; — 0}

N
Gownpete "IVDW.),

where
HW,u)=2 Y Wjsinh® ((u; — u)/2).
{ij}€E

DWW, u)y=>Y " [] Wyje .

TeT {ij}eT

and



VRJP <— SuSy hyperbolic sigma model in QFT (I1)
Fixed conductances (W,)ece, G finite (Merkl-Rolles-T."19)

o O (du) marginal of Gibbs “measure” on supermanifold
extension H22 of hyperbolic plane with action

Aw(v,v) =32, Wi(vi — vj, vi — v;), taken in horospherical
coordinates after integration over fermionic variables.

e Merkl-Rolles-T."19: Other variables in extension of SuSy model
arise on two different time scales as limits of

» |ocal times on logarithmic scale

> rescaled fluctuations of local times

P rescaled crossing numbers

> last exit trees of the walk (tree version of fermionic variables)

e Bauerschmidt-Helmuth-Swan '19 (AP and AIHP): very nice
interpretation of in terms of Brydges-Frohlich-Spencer-Dynkin
isomorphism for the supersymmetric field.



VRJP <— random Schrodinger (Sabot-T.-Zeng '15) (1)

Let, forall i € V,

1 o .
= LY W s,
i
v~ T(1/2) indep. of u.
> Vi iy, (B; = jump rate from i

» [ field 1-dependent: S, and 5y, are independent if
diStg(Vl, VQ) > 2.

» On Z9 with W; = W constant, (3;)icy translation-invariant
» The marginals j3; are such that (23;)~! have



VRJP <— random Schrodinger: Range and law of 3 (II)

v

V finite
» A = (Ajj)ijev discrete Laplacian, letting W; := iji Wi,

Asioe Wij, ifinj, i#]
U W, ifi=

» Hg:= —A+ 23, W diagonal with coefficients (W;)jcv.

Hs > 0 (positive definite): == (Hg)~! has positive entries.
> B =(Bi)icv has

VI o g.
2 eZiEV(VVI/2 51)
w
v(dp) = \/; Liry>0——=—= | | 96

V ’Hﬂ‘ iev

v



VRJP <— random Schrodinger: Retrieve u from /5 (lll)

> Set G = (HB)_l.
» Then

1
pi=5 D Wyetmv i # iy

s Hy(e")(7) = (A +28)(e")()) = 0, i £ o
ui _ G(i07 i)
el = m, ieV

where (uj)jcv defined above and follows the law

» Hence, time-changed VRJP starting from iy mixture of
Markov jump processes with
1 1. G(io,J)

Wbl — W
0 Vive 2" G (o, 1)




ERRW/VRJP and statistical physics: implications

Using link with QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer '10 :

Theorem (ST'15, Angel-Crawford-Kozma'l4, G bded degree)
ERRW (resp.VRJP) is positive recurrent at strong reinforcement,
i.e. for ac (resp. We) uniformly small in e € E.

Theorem (ST'15, Disertori-ST'15, G = Z9, d > 3)

ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for a.
(resp. W, ) uniformly large in e € E.

Using link with Random Schrodinger operator:

Theorem (Sabot-Zeng '19, Sabot -19, Merkl-Rolles '09)
ERRW with constant weights a. = a (resp. W. = W) is recurrent
in dimension 2.

Theorem (Poudevigne'19)

Increasing initial weights of ERRW and VRJP makes them more
transient (unique phase transition).



*_Edge-Reinforced Random Walk motivation : Reversible
k-dependent Markov chains

» (Y;) k-dependent Markov chain on S finite (i.e. law of Y41
depends only on (Y,—k+1,---, Yn)).

» Equivalent to Markov chain (Xj,) on the (directed) de Bruijn
graph G = (V = Sk E) with

w:(il,...,ik)—>(IJ:(I.2,...,I'/<+1)

with transition rate p(w,®), and invariant measure m(w).
The k-dependent Markov chain is called reversible if

(Yi, .., YD) Z (Yo, .. YY)

as soon as (Y1,..., Yx) ~ 7 invariant measure. This is equivalent
to the "modified” balance condition

m(w)p(w, @) = m(&*)p(&", w),

where w” is the flipped k-string w* = (ig, ..., 1).



General framework
» G = (V, E) directed graph with involution % on V s.t.
(i,j)e E= (% i") € E
> Let Vo={ieV:i=i*},and Vi best. V=WUViUV]
disjoint.
> «a;; >0, (i,j) € E such that a;j = aj« j=.

We call ~-ERRW with initial weights (), the discrete time
process (X,) defined by

L)
i} Z/,xn—w Z(Xn,/)(”))

P(Xnt1=J[ Xk, k< n)=1x,
where
Z(ijy(n ):aiJJr’Vu( n) + Nj- i+ (n)

N jy(n Z]l{(xk LX) =(1)}
k=1



-ERRW: partial exchangeability

Let
div(z)(i) = Z Zjj— Z zi;, div:RE—RY,
Ji—=J J—i
7(i0>a)

LT .
(ITievs M3 (0 + 1= 1275700 (TTeys T(inf(as, )
H(i,j)eE‘ (i) '
Let £ be the set of edges quotiented by the relation (i) ~ (j*,i*).

Proposition (Bacallado '11, Baccalado, Sabot and T. '21)
Letip € V. If div(a) = djz — 0iy, then the x-ERRW starting from o
is partially exchangeable. More precisely, if Be = e + ne, n(; j)
number of crossings of oriented edges (i,j) and (j*,i*), then

(o, @)

PP0(Xg = ig, ..., Xp = in = jo) = ———~.
( n = in = Jo) v(jo, B)



*_-Edge Reinforced Random Walks (*-ERRW): statistical

view

» Statistical analysis of molecular dynamics simulations with
microscopically reversible laws.

» Two other applications, beyond Bayesian analysis of
higher-order Markov chains (Bacallado, 2006):

» Variable-order Markov chains with context set
CCSUS?U---U Sk on de Bruijn graph: (i, ...,i) € C,
transition probabilities out of x and y are the same whenever x
and y both end in (i1, ..., ).

> Reinforced random walk with amnesia: RW on G = (V, E)
defined by V = SU S?U ... Sk with two types of edges:
“forgetting” ones (it,...,im) = (i, ... im), if m>1,
“appending” ones (i1, ..., im) = (f1,--.,im,J), for each j € V,
if m < k. Can be seen as generalization of the above, by
disallowing appending when word ends with subword in the
context set.



*-Edge Reinforced Random Walks (*-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

» (Z,(e)/n)nen converges a.s. to random vector X in
L1={x€(0,00)E : x;j = xjs i+, div(x) =0, > cp xe = 1}.

» Conditionally on x, ERRW is a Markov chain Py with jump
probability x;/x; from i to j, xi = Y, Xik.

» The random variable X has the following density on L1, w.r.t
[lccp dXe, B basis of Ly:

il
i jyeexij

. 1
Cy(io, ) \/Xi, T .\/D(X) dxc,,
[Tiev X [iev, v




*-Edge Reinforced Random Walks (*-ERRW): results

Recall that

(o, o)
B (Hievo r(%(a; +1- 1;:;0)2% i '0)) (H icvy I(inf(ai, Oéi*)))
- 1 jyee Meiy)

and

)

2
C= _ ) Yij-
m\Vﬂ 1\@|Vo|+\V1| Z(,ET

The last sum runs on spanning trees directed towards a root
Jo € V (value does not depend on the choice of the root jp).



Correspondence *-ERRW <— *-VRJP (I)

Let (We)eck be conductances on edges, Wj; = W~ > 0.

The *-Vertex-Reinforced Jump Process (*-VRIP) (Y5)s>0 is a
continuous-time process defined by Yo = ip and, if Y5 =, then,
conditionally to the past,

Y jumps to j ~ i at rate W; ;jLj(s),

with B
Lj(S) =1 —‘r/ ]l{yu:j}du.
0



Correspondence *-ERRW <— *-VRJP (lI)
Random conductances (We)ecr

Theorem (Bacallado-Sabot-T. '21)

*ERRW (Xn)nen with weights (ae)eck, (tij = ujsj=

II/ " ”
Mo VRJP (Yt)e=0 with conductances We ~ T'(ae), e € E indep.

(at jump times)

Proof.
Similar to [T.'11, Sabot-T."15], as for any linearly reinforced RW

on its continuous time version. L]



*-VRJP: again three timescales

Jump rates from i to j

» Initial timescale process Y, with local time L :
S
WyLi (), with Li(s) =1+ /0 1y, jdu
» Reversible timescale process Z, with local time T
S
0
» Exchangeable timescale process X:

1+

1 ) s
EVVU ﬁ,wﬂ:h fj(s):/o Il{xu:j}du.



The limiting manifold
Set L§¥ = {(u)iev, div(W") =0, 3;cy uj = 0}.
Proposition
The following limit

Ui = tll[go Ti(t) —t/|V]

exists a.s. and U € LY.

Proof of U € £W

If X is at i, it jumps to j with probability Wd(ei(!)+Ti*(*)) on
infinitesimal time interval. Hence

WieTiOTT (0 /(Z0n () + Z(jei+)(£)) =200 1.

On the other hand, by Kirchoff’s law,

| Z i) (£) + Z(jein (1) — Z (Z(kiy (£) + Zeieny (1) < 1.

Jii—j k: k—i



Randomization of the initial local time

» Also appears in the context of self-repelling motion: T., Téth
and Valkd'12, Horvath, Téth and Veto'12.

» For iy € V, consider the probability measure Vigv on
A={(a)) eRY,ax = —a;}
given by
w 1 ax _ 1 Z W et T
Vi (da) = —————~e 0 e 22~ i da

F(W,ip) ’
where da = [];c\, da; and F(W, ip) normalizing constant.

Proposition
Let (ce) be positive weights with div(a) = 6;= — dj,, and
W, ~ Gamma(ae) indep. Then WA 2w



Let
Fy () =E®()
be the law of the x-VRJP after expectation with respect to
A~ V,-::V.
Proposition
Let

Cr) = 3 (T (0 _ 1)

iev
and Zs = Xc-1(s). Then Z is partially exchangeable, and in

particular there exists a random variable U € E(‘)/V such that,
conditionally on U, Z is a Markov process with jump rates

1 L
EeUf*_U"* from i to j.



Limit measure of *-VRJP

Theorem

Under P‘-(/)V, the random variable U € LYV has density on LY given
by

L ' ~Yievy ”"e_% i Wiett Tl D(wWv) 7
V2 T R (W i) det(PAM(W4)P4)

with P 4 orthogonal projection onto A, and
pw=>_ 11 wi
T {ij}eT

where the sum runs on rooted spanning trees of the graph, and
M(W") is the generator of the Markov jump process at rate Wllj/



*-VRJP: Random Schrodinger version

Let Hg = 8 — W, Gz = Hy™".
Theorem
For all § € (0,00)Y, 1 € (0,00)Y, we have

d

LH,>0 1 p
HG/S N p( 5 (0, Hg0) — <777G/3?7>> I

ieVy
1 1
= [ ——exp <— (e?0, We?0) + = (6, W) — (n, e‘39>> da.
[ e (3 :

When Xy = ip, the measure on [ is associated to a differentiation
with respect to 7;, of a combination of the two measures above at
n=0,0=1on {ip,ij}°.
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