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with probability p and delete it with probability 1 — p,
independently for each edge. There exists some p. € (0,1) (“the
critical p”) such that for p < p. all components (“clusters”) of the
resulting graph are finite, while for p > p. there is a unique
infinite cluster. The behaviour at and near p. is not well
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This minicourse will focus on recent advances around this
problem, with particular emphasis on the growing understanding
of the importance of the Aizenman-Kesten-Newman argument.
(but we will only get to it in the second hour)
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p + € percolation as if we take p-percolation and then “sprinkle”
each edge with probability €. For a vertex x and a sequence of
directed edges e1,...,e,, denote by E, ., ., the event that 0 is
connected to x by a path 7, in p-percolation from 0 to e; then
ey is sprinkled, then there is a path v, from ef to e; then e is
sprinkled and so on. We end with a path v, from e, to x. We
require all the v; to be disjoint. Clearly 0 < z is p+ &
percolation if and only if there exist some ey, ..., e, (possibly
empty) such that Ey ., .. hold.
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This is sharp on a tree but not in general.
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If the value in the parenthesis is smaller than 1 then P(0 <> )
decays exponentially in |z|, contradicting the previous
theorem. O
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Two applications:

Lemma (K-Nachmias, 2011)
For any x € O\, A, = [-n,n]¢,

P,.(0 Any z) > cexp(—Clog®n).

Lemma (Cerf, 2015)

For any x,y € Ay,

P, (z (i, y) > enC.

All constants ¢ and C' might depend on the dimension.
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Assume first that x — y = (2k,0,...,0), £ < n. Then there
exists a z such that

A A c
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By FKG
Agn A Azn _ @
P(w@y)zp(x&x—i—z,y(—%y—l—z)zw.

Proving the lemma in this case.
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Aap, _
For any x,y € Ay, Py, (z <25 y) > en? 2d%

This was recently improved to en— by van den Berg and Don.
Their proof has an interesting topological component.
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Proof.

It is easier to draw in d = 2 so let us do this. Let p(a,b) be the
probability of an easy-way crossing of an a x b rectangle. We
first claim that p(4n,n) < 5p(2n,n). This is because if some
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it must cross either one of 3 horizontal rectangles or one of two
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Crossing probabilities

Theorem

Let A be an 2n X --- X 2n X n box in Z%. Then
P,.(A has an easy-way crossing) > c
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Proof.

It is easier to draw in d = 2 so let us do this. Let p(a,b) be the
probability of an easy-way crossing of an a x b rectangle. We
first claim that p(4n,n) < 5p(2n,n). This is because if some
path v crosses from the top to the bottom of a 4n x n rectangle,
it must cross either one of 3 horizontal rectangles or one of two
vertical ones. We next claim that p(4n,2n) < p(4n,n)%. But
that means that p(4n,2n) < 25p(2n,n)? and inductively that
p(2F1n, 2kn) < 252" ~1p(2n, n)2".
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Proof.

It is easier to draw in d = 2 so let us do this. Let p(a,b) be the
probability of an easy-way crossing of an a x b rectangle. We
first claim that p(4n,n) < 5p(2n,n). This is because if some
path v crosses from the top to the bottom of a 4n x n rectangle,
it must cross either one of 3 horizontal rectangles or one of two
vertical ones. We next claim that p(4n,2n) < p(4n,n)%. But
that means that p(4n,2n) < 25p(2n,n)? and inductively that
p(2¥+1n, 2kn) < 252°~1p(2n, n)2*. Thus, if for some n,

p(2n,n) < %, then it decays exponentially, contradicting the
result that x(p.) = oo. O
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Let A be an 2n X --- X 2n X n box in Z%. Then
P,.(A has an easy-way crossing) > c

It is natural to ask if there is a corresponding upper bound,
namely is it true that

P,. (A has an easy-way crossing) <1 —c¢

for some ¢ > 07 This is true when d = 2. It is false for d > 6, in
fact

(A has an easy-way crossing) — 1 as n — oo.

Pp.
It is not known in intermediate dimensions. In dimensions 2 and
high, there is no significant difference between easy-way and
hard-way crossing. In intermediate dimensions this is not

known.
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P(0 < OAy,) > ¢/nld=1)/2,
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Proof.

By the previous theorem we know that the box

[—n/2,n/2] X [-n,n] X -+ X [=n,n] has an easy-way crossing
with probability at least c.
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Proof.

By the previous theorem we know that the box

[—n/2,n/2] X [-n,n] X -+ X [=n,n] has an easy-way crossing
with probability at least c. “Easy-way” means from

{n/2} x [-n,n]?! to {~n/2} x [-n,n]?! so it must cross

0 x [-n,n]?1.
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Theorem

P(0 < OAy,) > ¢/nld=1)/2,

Proof.

By the previous theorem we know that the box

[—n/2,n/2] X [-n,n] X -+ X [=n,n] has an easy-way crossing
with probability at least c. “Easy-way” means from

{n/2} x [-n,n]?! to {~n/2} x [-n,n]?! so it must cross
0 x [—n,n]9"!. Therefore there exists some x € {0} x [-n,n]
such that the probability that the crossing pass through it is at
least ¢/n?1,
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| 5\

d—1

\




One arm exponent

Theorem

P(0 < OAy,) > ¢/nld=1)/2,

Proof.

By the previous theorem we know that the box

[—n/2,n/2] X [-n,n] X -+ X [=n,n] has an easy-way crossing
with probability at least c. “Easy-way” means from

{n/2} x [-n,n]?! to {~n/2} x [-n,n]?! so it must cross
0 x [—n,n]9"!. Therefore there exists some x € {0} x [-n,n]
such that the probability that the crossing pass through it is at
least ¢/n"!. But if it does, then z is connected to distance at
least n/2 by two disjoint paths. The BK inequality finishes the
proof. O

| 5\

d—1

4




One arm exponent

Theorem

P(0 < OAy,) > ¢/nld=1)/2,

Proof.

By the previous theorem we know that the box

[—n/2,n/2] X [-n,n] X -+ X [=n,n] has an easy-way crossing
with probability at least c. “Easy-way” means from

{n/2} x [-n,n]?! to {~n/2} x [-n,n]?! so it must cross
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In d = 2 Kesten improved this to n~1/3.
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Lemma

Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.
We define sets of edges ) = Sy € S; C -+ for i < n as follows.
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Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.
We define sets of edges ) = Sy € S; C -+ for i < n as follows.

Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e.
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Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.

We define sets of edges ) = Sy € S; C -+ for i < n as follows.
Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e. We choose
one such e arbitrarily and define S;y; = S; U {e}.
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Proof.

We define sets of edges ) = Sy € S; C -+ for i < n as follows.
Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e. We choose

one such e arbitrarily and define S;y; = S; U {e}. If no such e
exists (and this happens when |S;| = B + E), let S;y1 = S;.
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Exploration and martingales

Lemma

Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.

We define sets of edges ) = Sy € S; C -+ for i < n as follows.
Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e. We choose
one such e arbitrarily and define S;y; = S; U {e}. If no such e
exists (and this happens when |S;| = B + E), let S;y; = S;. Let
X; be 1 — p times the number of open edges in S; minus p times
the number of closed edges in S;.
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Lemma

Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.

We define sets of edges ) = Sy € S; C -+ for i < n as follows.
Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e. We choose
one such e arbitrarily and define S;y; = S; U {e}. If no such e
exists (and this happens when |S;| = B + E), let S;y; = S;. Let
X; be 1 — p times the number of open edges in S; minus p times
the number of closed edges in S;. Then X; is a martingale.
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Lemma

Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce~.

Proof.

We define sets of edges ) = Sy € S; C -+ for i < n as follows.
Assume at step i there exists some edge e € S; such that there is
an open path in S; from 0 to one of the vertices of e. We choose
one such e arbitrarily and define S;y; = S; U {e}. If no such e
exists (and this happens when |S;| = B + E), let S;y; = S;. Let
X; be 1 — p times the number of open edges in S; minus p times
the number of closed edges in S;. Then X; is a martingale. The
lemma follows from Azuma-Hoeffding. O
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This is a flexible argument. You can start from a set of vertices
(not just one), and you can add additional stopping conditions.
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parameter. Then
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This is a flexible argument. You can start from a set of vertices
(not just one), and you can add additional stopping conditions.
For example,

Lemma

Let S C A be the set of vertices connected to the boundary. Let
E be the number of open edges between vertices of S and let B
be the number of closed edges with at least one vertex in S and
both vertices in A.




Exploration and martingales

Let E be the number of open edges in € (0) and let B be the
number of closed edges in its boundary. Let A > 0 be some
parameter. Then

P,(B+ E <n,|(1—p)E — pB| > A\V/n) < Ce™.

This is a flexible argument. You can start from a set of vertices
(not just one), and you can add additional stopping conditions.
For example,

Lemma

Let S C A be the set of vertices connected to the boundary. Let
E be the number of open edges between vertices of S and let B
be the number of closed edges with at least one vertex in S and
both vertices in A. Let X = (1 —p)E — pB. Then

P(|X| > An%?) < =
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Let A, B be subsets of E C Z¢. We denote by
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Ae B
the event that there are two disjoint clusters in E which
intersect both A and B.




Notation
Let A, B be subsets of E C Z¢. We denote by

A& B

the event that there are two disjoint clusters in E which

E
intersect both A and B. We will use very often A £ dF and in
this case we omit the superscript, i.e. write A & 0F.
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Let V' be the number of edges (x,y) in A, such that
{z,y} £ O\, i.e. both x and y are connected to ON,, but x o V.
Then E(V) < Cn=1/2,/logn.

Proof (Gandolfi-Grimmett-Russo).

For an S C A,, define X(S) to be 1 — p times the number of
open edges between two vertices of S minus p times the number
of closed edges with at least one vertex in S and both vertices in
A,. Let €1,%5, ... be all the clusters in A,, that touch the
boundary. Then

x(U#) - x(@) =pv.
i i
The exploration argument shows that with high probability

X(U%)| < on*viogn  1x(6)] < OVIGlViogn Vi
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Theorem

Let V' be the number of edges (z,y) in A, such that
{z,y} 8 0A,. Then E(V) < C’nd—l/?\/@'

Proof (Gandolfi-Grimmett-Russo).

For an S C A,, define X(S) to be 1 — p times the number of
open edges between two vertices of S minus p times the number
of closed edges with at least one vertex in S and both vertices in
A,. Let €1,%5, ... be all the clusters in A,, that touch the
boundary. Then X (UJ; 6;) — >, X(%;) = pV. The exploration
argument shows that with high probability

X (U;6)| < Cn??\logn, |X(%)| < C\/[%i]vlogn for all .
By Cauchy-Schwarz,

Z\/@ < /Z kA /Zl < VndVnd=1 = pd=1/2,

“with high probability” can be made to mean “with probability
>1—n"12" and we are done. ]
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For x a neighbour of 0,

P({0, 2} 43 OA,) < Cy/ 1°Tgl”-

A flexible argument: by changing from where you explore you
can get all kinds of results.
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Let V' be the number of edges (z,y) in A, such that
{z,y} 8 0A,. Then E(V) < C’nd—l/?\/@'
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Corollary
For x a neighbour of 0,
1
P{0,z} 3 A,) < Cy/ 222

n

A flexible argument: by changing from where you explore you
can get all kinds of results. For example, if L is the union of all
clusters reaching the left side of A,, and R is the union of all
clusters reaching the right side of A, then

X(LUR)— X(L) — X(R)

teaches something about edges connected to both the left and
the right.



Theorem

Let V' be the number of edges (z,y) in A, such that
{z,y} 8 0A,. Then E(V) < C’nd—l/?\/@'

| \

Corollary
For x a neighbour of 0,
1
P{0,z} 3 A,) < Cy/ 222

n

A flexible argument: by changing from where you explore you
can get all kinds of results. For example, if L is the union of all
clusters reaching the left side of A,, and R is the union of all
clusters reaching the right side of A, then

X(LUR)—-X(L)— X(R)
teaches something about edges connected to both the left and

the right. Hutchcroft has a version where one explores from
random points.
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For x a neighbour of 0, P({0,2} & 0A,) < Cy/(logn)/n.
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Pp. (Ape £ 0A,) < Cn™¢ for ¢ > 0 small enough.

Let £k < %n be some number (it will be n¢ eventually, but for
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Let x € ANAr and y € BN Ag. With probability at least
k2424 there is an open path v from z to y.
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Let £k < %n be some number (it will be n¢ eventually, but for
now let us keep it a parameter). Recall the lemma from the

: A
previous hour: For any z,y € Ag, Py (z <25 y) > ck2d—2d* Tt
gives

Lemma
Let A, B C Aog, both intersecting Ax.. Then

Asx\AUB

P, (A B) > ck?42%

|[

Proof.

Let x € ANAr and y € BN Ag. With probability at least
ck2d=2d% there is an open path v from x to y. The portion of ~
from its last vertex in A until the first vertex in B after it
demonstrates the lemma. ]
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Let E be the event that there exist edges e,f € Aoy, such that
O\, e et < f,fT < 0N, bute” <»et, f~ o fT and
e~ o fT.




Let E be the event that there exist edges e,f € Aoy, such that
O\, e et & [T T 0N, bute” «» e, [~ o fT and
e~ o fT.

fw@

Ny

O\,




Theorem (Cerf, 2015)

Pp. (Ape £ 0A,) < Cn™¢ for ¢ > 0 small enough.

Lemma: Let A, B C Ay, both intersecting Ay. Then
P, (A <2295 By S k242 Denote P = P(Ay, £ OA,).

Let E be the event that there exist edges e,f € Aoy, such that
O\, e et < f,fT < 0N, bute™ <»et, f~ o fT and
e~ & ft.  Then P, (E) > ck 2P,




Theorem (Cerf, 2015)

Py (Ape £ OAy,) < Cn™¢ for ¢ > 0 small enough.
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Lemma

Let E be the event that there exist edges e,f € Aoy, such that
ON, e et < [T, fT < 0N, but e «» et [~ » fT and
e~ ft.  Then P, (E)> k2 p.

| A\

Proof.

There exist some z, y € Ay, such that with probability k=2¢P,
T < 0Ny, y < OA, and x «» y.
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Proof.

There exist some z, y € Ay, such that with probability k=2¢P,
x <> 0Ny, y <> OA,, and x «» y. Condition on € (z) and € (y).
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There exist some z, y € Ay, such that with probability k=2¢P,
x <> 0Ny, y <> OA,, and x «» y. Condition on € (z) and € (y).
Use the previous lemma with A = €(z) i.e. € (z) with its

immediate neighbourhood and B = €'(y).
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Proof

There exist some z, y € Ay, such that with probability k=2¢P,

x <> 0Ny, y <> OA,, and x «» y. Condition on € (z) and € (y).
Use the previous lemma with A = €(z) i.e. € (z) with its
immediate neighbourhood and B = %(y). A 22208 Bis
independent of the conditioning. Ol




Lemma

Let E be the event that there exist edges e,f € Aoy, such that
O\, e et < f7,fT < 0N, but e” «» et [~ «» fT and
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Proof.

There exist some z, y € Ay, such that with probability k~2¢P,
x <> 0Ny, y <> OA,, and x «» y. Condition on € (z) and € (y).

Use the previous lemma with A = €(x) i.e. € (z) with its
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Let E be the event that there exist edges e,f € Aoy, such that

O\, e et < f7,fT < 0N, but e” «» et [~ «» fT and
& fT.  Then P, (E) > ck 2P,
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Proof

There exist some z, y € Ay, such that with probability k~2¢P,
x <> 0Ny, y <> OA,, and x «» y. Condition on € (z) and € (y).
Use the previous lemma with A = €(x) i.e. € (z) with its

immediate neighbourhood and B = %(y). A 22208 B s
independent of the conditioning. Ol

This kind of argument is called a “patching argument”.
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Lemma

Let E be the event that there exist edges e,f € Aoi such that
0N, e et & fT,fT < 0N, bute™ s et, f~ <« fT and
e~ & ft. Then P (E) > ck=2° P,
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Let E be the event that there exist edges e,f € Aoi such that
ON, <> e et < [T, fT < 0N, bute” «»et, f~ < [T and
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Proof of the theorem.

For given edges e and f denote by E, r the event as in the
lemma (so E = |J E, ).
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Let E be the event that there exist edges e,f € Aoi such that
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Proof of the theorem.

For given edges e and f denote by E, r the event as in the
lemma (so E = |J E,,¢). Choose some e and f such that
P(E, ;) > ck™2@~2p,
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For given edges e and f denote by E, r the event as in the
lemma (so E = |J E,,¢). Choose some e and f such that
P(E.f) > ck=2=2dp_ The event E; ; that “E, ; would have
been satisfied had e been closed, but it’s open” satisfies
P(E:,f) ~ P(Ee,f).
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For given edges e and f denote by E, s the event as in the
lemma (so E = J Ee,¢). Choose some e and f such that
P(Ee,f) > ck~ 2°-2dp The event E; ; that “Ee .f would have

been satisfied had e been closed, but 1t s open” satisfies
P(E} ;) = P(Ee,r). But E} ; implies f £3 OA,, which has

probability < C'y/(logn)/n. All in all we get

logn
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> P(E! ;) > cP(Ee ) > ck™ 2 ~%p,
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For given edges e and f denote by E, s the event as in the
lemma (so E = J Ee,¢). Choose some e and f such that
P(Ee,f) > ck~ 2°-2dp The event E; ; that “Ee .f would have
been satisfied had e been closed, but 1t s open” satisfies
P(E} ;) = P(Ee,r). But E} ; implies f £3 OA,, which has

probability < C'y/(logn)/n. All in all we get

1
O[22 > P(E? ;) > cP(B, f) > ck™#~24p,
n
Choosing k = n!/®2*+8d) hroves the theorem. O
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which is not a big improvement over %, say in d = 3 it gives
12
273.
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o Cerf had the a scheme for improving the exponents.
Unfortunately, the end result was
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12
273.

Let 1 be some positive number smaller than m.
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Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,.




Theorem (Cerf, 2015)

Pp. (A1) a2 480)—01) 3 OAp) < Cn~1/4,

Lemma

| A

Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,. Then

P,.(3 large cluster) <1 —c.
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Lemma

Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,. Then

P,.(3 large cluster) <1 — c.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, ¢’ and E’).

| \

A\
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Lemma

Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,. Then

P,.(3 large cluster) <1 — c.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, ¢’ and E’). Then
there at least % of the n cubes in A N A’ intersect both ¢ and
€.
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Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,. Then

P,.(3 large cluster) <1 — c.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, ¢’ and E’). Then
there at least % of the n cubes in A N A’ intersect both ¢ and
¢'. It € # ¢’ then each of these cubes satisfies the two disjoint
clusters event.
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Call a cluster € in Ay, “large” if it intersects % of the cubes of
side-length n" in A,. Then

P,.(3 large cluster) <1 — c.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, ¢’ and E’). Then
there at least % of the n cubes in A N A’ intersect both ¢ and
¢'. It € # ¢’ then each of these cubes satisfies the two disjoint
clusters event. Hence by Cerf’s theorem and Markov’s inequality

| \

P,.(ENE N{€ #€'}) < Cn~ Y4
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Call a cluster € in A, “large” if it intersects % of the cubes of

side-length n" in A,,. Then P, (3 large cluster) <1 — ¢;.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, ¢’ and E).
Then there at least % of the n" cubes in A N A’ intersect both €
and ¢’'. If € # ¢’ then each of these cubes satisfies the two
disjoint clusters event. Hence by Cerf’s theorem and Markov’s
inequality P, (ENE'N{% # €'}) < Cn~ V4.
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By continuity, the same inequality will hold for a slightly
smaller p.
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Call a cluster € in A, “large” if it intersects % of the cubes of

side-length n" in A,,. Then P, (3 large cluster) <1 — ¢;.

Proof.

Denote the event by E. Assume both F and its translation by
(n/2,0,...,0) occurred (call the translates A’, " and E’).
Then there at least i of the n" cubes in A N A’ intersect both €
and ¢’'. If € # ¢’ then each of these cubes satisfies the two
disjoint clusters event. Hence by Cerf’s theorem and Markov’s
inequality P, (ENE'N{%€ # €'}) < Cn~/%. Hence

P, (€ =%") > 1—2¢; — Cn~ V4,

By continuity, the same inequality will hold for a slightly
smaller p. By a theorem of Liggett, Schonmann and Stacey
(1997), if ¢; is sufficiently small and n sufficiently large, then an
infinite cluster exists, contradicting p < p.. ]
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i.e. we define the cluster by connections in Ao, but still ask only
about intersections with subcubes of A,,.
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side-length n" in A,,. Then P, (3 large cluster) <1 — c.

The same argument works for clusters Ay, (or any constant),
i.e. we define the cluster by connections in Ao, but still ask only
about intersections with subcubes of A,. The proof is the same,
only the “distance of independence” in
Liggett-Schonmann-Stacey needs to be increased.



Call a cluster € in Moy, “large” if it intersects % of the cubes of
side-length n" in A,,. Then P, (3 large cluster) <1 —c.

The same argument works for clusters Ay, (or any constant),
i.e. we define the cluster by connections in Ao, but still ask only
about intersections with subcubes of A,. The proof is the same,
only the “distance of independence” in
Liggett-Schonmann-Stacey needs to be increased.
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, P, (A +» OA,) > Cn~?,
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Proof.
Examine one v (whose value will be chosen later) and assume by

contradiction that this probability is, in fact, larger than
1-Cn ¢
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contradiction that this probability is, in fact, larger than

1 —Cn~® Then, with probability > 1 —n~% each box

a+ Ay, a € A, is connected to a + OA,,.
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1 —Cn~® Then, with probability > 1 —n~% each box

a+ Ay, a € A, is connected to a + 0A,,. Denote this event by
A.
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a+ Ay, a € A, is connected to a + 0A,,. Denote this event by
A. In particular, all boxes in A;, /4 are connected to 9A;, /5.




Call a cluster € in Moy, “large” if it intersects % of the cubes of
side-length n" in A,,. Then P, (3 large cluster) <1 —c.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Apr « OA,) > Cn~7.

Proof.

Examine one v (whose value will be chosen later) and assume by
contradiction that this probability is, in fact, larger than

1 —Cn~® Then, with probability > 1 —n~% each box

a+ Ay, a € A, is connected to a + 0A,,. Denote this event by
A. In particular, all boxes in A;, /4 are connected to 9A;, /5.
During this proof, whenever we say “cluster” we mean a cluster
in Ay that inlersects Ay 4 and 0N, o
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Call a cluster € in Moy, “large” if it intersects % of the cubes of
side-length n" in A,,. Then P, (3 large cluster) <1 — c.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, P, (Apw +» OA,) > Cn=9.

Proof.
A = {all n” boxes in A,, ), are connected to 9A,, 5}
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Proof.

A = {all n” boxes in A, /4 are connected to dA,,/o}. For
every cluster ¢ let N (%) be the number of n”-subboxes of A,, /5
that intersect €.
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A = {all n” boxes in A, /4 are connected to dA,,/o}. For
every cluster ¢ let N (%) be the number of n”-subboxes of A,, /5
that intersect €. Under A we have,

n(=4 <N N(%)
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Proof.
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every cluster ¢ let N (%) be the number of n”-subboxes of A,, /5
that intersect ¥’. Under A we have, by concavity

n(—v)d < ZN(%) < (ZN(%)(d—l)/d>d/(d—l)‘
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, P, (Apw +» OA,) > Cn=9.

| A

Proof.

A = {all n” boxes in A, /4 are connected to dA,,/o}. For
every cluster ¢ let N (%) be the number of n”-subboxes of A,, /5
that intersect ¥’. Under A we have, by concavity

n(—v)d < ZN(%) < (ZN(%)(d—l)/d>d/(d—l)‘
¢ ¢

By the lemma,

E Z N(%)(d_l)/d > Cn(l_y)(d_l).
% small
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Let N(%) be the number of n”-subboxes of A,, /5 that intersect
. EY g g N (#) @D/ > enlt=D),
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For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g aman N(€)71/4 > cp(1=1)d=1) = Tet us return to the
proof of Gandolfi-Grimmett-Russo. In fact it shows that

P(0 & 0A,,)4) < Cn™ 42 4 C(logn)n dEZ\/\CK

|
R
1
S
~
S
|
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\

where the sum is over clusters in A, /.




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Ayw « OA,) > Cn~¢

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect

C. EY g aman N(€)71/4 > cp(1=1)d=1) = Tet us return to the
proof of Gandolfi-Grimmett-Russo. In fact it shows that

A
|
~

P(0 & 0A,,)4) < Cn™ 42 4 C(logn)n dEZ\/\CK

where the sum is over clusters in A, /5. A variation on the
argument, also due to Cerf, shows that one can take the sum
only over ¢ in A, that intersect A, /4 and A, /5.




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Ayw « OA,) > Cn~¢

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect

C. EY g aman N(€)71/4 > cp(1=1)d=1) = Tet us return to the
proof of Gandolfi-Grimmett-Russo. In fact it shows that

A
|
3 |
~

P(0 & 0A,,)4) < Cn™ 42 4 C(logn)n dEZ\/\CK

where the sum is over clusters in A, /5. A variation on the
argument, also due to Cerf, shows that one can take the sum
only over ¢ in A, that intersect A,, /4 and A, 5. And with
Cerf’s lemma,

P(Azn £ OA,,4) < CnCVP(0 3 0A,, /)




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Ayw « OA,) > Cn~¢

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect

C. EY g aman N(€)71/4 > cp(1=1)d=1) = Tet us return to the
proof of Gandolfi-Grimmett-Russo. In fact it shows that

A
|
3 |
~

P(0 & 0A,,)4) < Cn™ 42 4 C(logn)n dEZ\/\CK

where the sum is over clusters in A, /5. A variation on the
argument, also due to Cerf, shows that one can take the sum
only over ¢ in A, that intersect A,, /4 and A, 5. And with
Cerf’s lemma,

P(Azn £ OA,,4) < CnCVP(0 3 0A,, /)

S Cn*d/?ﬁLCl/ + Cn*d+CU]E Z /N((g)
4




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g sman N(€)dD/d > cp(i=)d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=dtCVE S\ /N(F).
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
<. EZ% small N((g)(d_l)/d > Cn(l_y)(d_l)'

P(Agny £ 00y ) < Cn~Y2+CY 4 Cp=d+OVE S~ \/N(F). The
isoperimetric inequality in Z¢ shows that for every small € we

have at least ¢cN (%)@ 1/4 subboxes of A, /2 which intersect ¢
but have a neighbouring box that does not intersect €.

| |
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g sman N(€)4D/4 > enli=)0D),

P(Agny £ 00y ) < Cn~Y2+CY 4 Cp=d+OVE S~ \/N(F). The
isoperimetric inequality in Z¢ shows that for every small € we
have at least ¢cN (%)@ 1/4 subboxes of A, /2 which intersect ¢
but have a neighbouring box that does not intersect €. Let @

be such a box and let @’ be its neighbour that does not interset
©.

|




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
€. BY ¢ pan N ()04 > cn1-(0-),

P(Agny £ 00y ) < Cn~Y2+CY 4 Cp=d+OVE S~ \/N(F). The
isoperimetric inequality in Z¢ shows that for every small € we
have at least ¢cN (%)@ 1/4 subboxes of A, /2 which intersect ¢
but have a neighbouring box that does not intersect €. Let @
be such a box and let @’ be its neighbour that does not interset
%. Under the event A (which, recall, said that every n” subbox
of A, /2 is connected to distance n), this implies that Q U Q' is
connected to distance n/4 by two disjoint clusters.
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
€. BY ¢ pan N ()04 > cn1-(0-),

P(Agny £ 00y ) < Cn~Y2+CY 4 Cp=d+OVE S~ \/N(F). The
isoperimetric inequality in Z¢ shows that for every small € we
have at least ¢cN (%)@ 1/4 subboxes of A, /2 which intersect ¢
but have a neighbouring box that does not intersect €. Let @
be such a box and let @’ be its neighbour that does not interset
%. Under the event A (which, recall, said that every n” subbox
of A, /2 is connected to distance n), this implies that Q U Q' is
connected to distance n/4 by two disjoint clusters. Thus, under
A, there are ¢Y . o V(€)@ 1/ boxes of size 2n” in Apjo
which are connected to distance n/4 by two disjoint clusters.

|




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
<. EZ% small N((g)(d_l)/d > Cn(l_y)(d_l)'

P(Agny £ Oy ) < On~Y2HCY 4 Cp=dtCVE S\ /N(F).
Thus, under A, there are ¢y o, ... N(%)(@1/ hoxes of size

2n” in A, /o which are connected to distance n/4 by two disjoint
clusters.

| |
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
. BY ¢ man N (€)1 > cn1=(d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=dtCVE S\ /N(F).
Thus, under A, there are ¢y o, ... N(%)(@1/ hoxes of size
2n” in A, /o which are connected to distance n/4 by two disjoint
clusters. There is some over-counting in this argument, every
2nY box might be counted for every cluster that intersects it.

| |
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
. BY ¢ man N (€)1 > cn1=(d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=dtCVE S\ /N(F).
Thus, under A, there are ¢y o, ... N(%)(@1/ hoxes of size
2n” in A, /o which are connected to distance n/4 by two disjoint
clusters. There is some over-counting in this argument, every
2nY box might be counted for every cluster that intersects it.

We bound the over-counting crudely by the volume of the box,
Cn®.
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
t. EZ(K small N((g)(d_l)/d > Cn(l_y)(d_l)'

P(Agny £ Oy ) < On~Y2HCY 4 Cp=dtCVE S\ /N(F).
Thus, under A, there are ¢y o, ... N(%)(@1/ hoxes of size
2n” in A, /o which are connected to distance n/4 by two disjoint
clusters. There is some over-counting in this argument, every
2nY box might be counted for every cluster that intersects it.
We bound the over-counting crudely by the volume of the box,
Cn®™. Overall we get, under A,

|

#{such boxes} > en~ Z N(%)d-D/d,

% small




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g sman N(€)dD/d > cp(i=v)d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=d+CVE S\ /N(F).
Under A,

| |
\

#{such boxes} > cn~% Z N(®)@-D/d,
% small




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d > 3 and some v = v(d) > 0, Py (Apw » OA,) > Cn=9.

Proof.

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g sman N(€)dD/d > cp(i=v)d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=d+CVE S\ /N(F).
Under A,

| |
\

#{such boxes} > cn~% Z N(®)@-D/d,
% small

Taking expectations gives

Cn=9P(Ag,w £ OA,,14) > cn™E N(¢)4-D/e,
/
% small




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof

Let N(%) be the number of n”-subboxes of A,, /5 that intersect
C. EY g sman N(€)dD/d > cp(i=v)d-1),

P(Agny £ Oy ) < On~Y2HCY 4 Cp=d+CVE S\ /N(F).
Under A,

|
A
|
~
S
|
&
A\

#{such boxes} > cn~% Z N(®)@-D/d,
% small

Taking expectations gives

Cnl=IP(Agny £ O pya) > e @E > N(%)D/4,

. % small
Together these give s

E Z (d 1/d<Cnd/2+Cu+CnCVZ]E /

% small




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect
c. EZ(K small N(cg)(d—l)/d > en(1=¥)(d—1)

E Z N (d 1/d<Cnd/2+CV+CnCV]EZ /

% small
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Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect
c. EZ(K small N(cg)(d—l)/d > en(1=¥)(d—1)

E Z N (d 1/d<Cnd/2+CV+CnCV]EZ /

% small
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We may add the requirement “% small” on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cv,
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For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect
c. EZ(K small N(cg)(d—l)/d > en(1=¥)(d—1)

E Z N (d 1 /d < Cnd/2+CV+CnCl/]E Z /

% small % small
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We may add the requirement “% small” on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cv,




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect
c. EZ(K small N(cg)(d—l)/d > en(1=¥)(d—1)

E Z N (d 1 /d < Cnd/2+CV+CnCl/]E Z /

% small % small
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We may add the requirement “% small” on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cv,
Since our clusters all touch both A, /4 and 9A,, /, we must have
N(%) > cn'~V for all €.




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v =v(d) > 0, P, (Apr «» 0A,) > Cn

Proof
Let N(%) be the number of n”-subboxes of A,, /5 that intersect
c. EZ(K small N(cg)(d—l)/d > en(1=¥)(d—1)

E Z N (d 1 /d < Cnd/2+CV+CnCl/]E Z /

% small % small
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We may add the requirement “% small” on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cv,
Since our clusters all touch both A, /4 and 9A,, /, we must have
N(%) > cn'~V for all €. Thus

Z\/i<cnlud2/dZN %)@=/

% small % small




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Ayw « OA,) > Cn~¢

Proof
Let N (%) be the number of n”-subboxes of A,/ that intersect
€. E> ¢ small N(%)dD/d > cp(t-v)(d-1)

E Z N (d 1 /d < Cnd/2+CV+CnCVE Z /

% small % small

A
|
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~

We may add the requirement “% small” on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cv,
Since our clusters all touch both A, /4 and 9A,, /, we must have
N(%) > cn'~V for all €. Thus

Z\/i<cnlud2/dZN %)@=/

% small % small

For v sufficiently small, we reach a contradiction. [




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Apr < OA,) > Cn~7.

The proof in a nutshell

The Aizenman-Kesten-Newman-Cerf argument gives
P(A,» £ A,) < uninteresting terms n ¢ Z V€|

The contradictory assumption, the isoperimetric inequality and
the fact that there are no large clusters give

P(A,» £ A,) > uninteresting terms n =% Z |z |(d-1/d,

And these two contradict.




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Apv «» OA,) > Cn~%

o Going through the calculation gives
d—2
VS B Al +d-2
so, say, 1/64 at d = 3.




Theorem (Duminil-Copin-K-Tassion, unpublished)

For d >3 and some v = v(d) > 0, P, (Apv «» OA,) > Cn~%

o Going through the calculation gives
d—2
VS B Al +d-2
so, say, 1/64 at d = 3.
@ The theorem holds also at d = 2 (known since the 80s, with
a different proof).
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zzea/\n P, (0 <% x) > 1

endencies diagram II
x(pe) = oo
( 7 s ¢
An

P,.(crossing) > ¢

-

J

l

, l

Ve

-

P, (z JLEIN y) > cn”

P,.(0 <> OA,,) > en(1=d)/2

-

~

J

l

Ve

-

Py, (Ape £ Ay) > cn~ /4

r

\

P,. (3 large cluster) <1 —c¢

J

{ P, (Ape «» OA,) > Cn—d




Ford> 3, P(Ane £2205 9A,) < Cn-1/8.




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Here Cerf



An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let n be sufficiently small so that P(A,n £ A,) < Cn~1/4,




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Proof.
Let n be sufficiently small so that P(A,n £ A,) < Cn~ Y4, Let
~ be sufficiently small so that P(A,y > OApn) > cn= /8,




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Proof.
Let n be sufficiently small so that P(A,n £ A,) < Cn~ Y4, Let
~ be sufficiently small so that P(A,v < OAyn) > cn~ /8. Denote

An\A,,
P =P(Ap~ é& O0A,,) (i.e. we need to show that P is small).




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1) be sufficiently small so that P(A,n £ A,) < Cn~Y% Let

~ be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

An\A,,
P =P(Ap é% OA,,) (i.e. we need to show that P is small).

An\A
For any A D Ay, P(A ﬁ\# OA,) > P.




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1) be sufficiently small so that P(A,n £ A,) < Cn~Y% Let
~ be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

An\A,,
P =P(Ap é% OA,,) (i.e. we need to show that P is small).

An\A
For any A D Ay, P(A ﬁ\# OA,) > P.




An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1) be sufficiently small so that P(A,n £ A,) < Cn~Y% Let

~ be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

An\A,,
P =P(Ap é% OA,,) (i.e. we need to show that P is small).

An\A
For any A D Ay, P(A ﬁ\# OA,) > P.

Let Ay € B C Aypn—1 and condition on B = €(Ayq).



An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1) be sufficiently small so that P(A,n £ A,) < Cn~Y% Let

~ be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

An\A,,
P =P(Ap é% OA,,) (i.e. we need to show that P is small).

An\A
For any A D Ay, P(A ﬁ\# OA,) > P.

Let Ajw C B C Apyn—1 and condition on B = ¢ (A, ). Let
= B. Outside A, the conditioning has no effect.



An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1) be sufficiently small so that P(A,n £ A,) < Cn~Y% Let

~ be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

An\A,,
P =P(Ap é% OA,,) (i.e. we need to show that P is small).

An\A
For any A D Ay, P(A ﬁ\% OA,) > P.

Let Ay € B C Apn—1 and condition on B = € (A,v). Let
A = B. Outside A, the conditioning has no effect. Use the
lemma and get

P(B = G(An), A €25 0A,) > P-B(B = €(An)).



An\Ape
For d >3, P(Ape === 0A,) < Cn~ /8,

Let 1 be sufficiently small so that P(A €3 A,) < Cn~ /4 Tet

7 be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote
P =P(Ap é% OA,). Let Apy € B C Ayn—q and condition

on B =% (Ayv). Let A= B. Then

P(B = €(An), A €25 0A,) > P-B(B = € (An)).



For d > 3, P(Ae % dA,) < Cn~1/8,

Let 1 be sufficiently small so that P(Ayn €3 A,,) < Cn~ 4, Let
7 be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

n\ nY

P =P(Apy &= 0A,,). Let A,y € B C Ay and condition
on B =%(An). Let A B. Then
P(B=%(Apv), A é:% OA,) > P-P(B =% (Anv)). Sum over

all such B and get

Ap\C (A,
P(Aws 0 DD, G (0ms) el 90 ) > P B(As o0 DAp)



For d > 3, P(Ae % dA,) < Cn~1/8,

Let 1 be sufficiently small so that P(Ayn €3 A,,) < Cn~ 4, Let
7 be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

n\ nY

P =P(Apy &= 0A,,). Let A,y € B C Ay and condition
on B =%(An). LetA B. Then

P(B=%(Apv), A é:% OA,) > P-P(B =% (Anv)). Sum over
all such B and get

P(Anv Aiad OAnn,‘K( n'y) é:m)$ 8A ) > P P(An'y Aiad 8Ann)
But the left-hand side implies Ay £ OA,.






For d > 3, P(Ae % dA,) < Cn~1/8,

Let 1 be sufficiently small so that P(Ayn €3 A,,) < Cn~ 4, Let
7 be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote

P =P(Ap 4% OM,). Let Ay € B C Apo_y and condition
on B =%(An). LetA B. Then

P(B=%(Apv), A é:% OA,) > P-P(B =% (Anv)). Sum over
all such B and get

P(An'y Aad OAnn,‘K( n'y) é:m)$ 8A ) > P- P(An'y Aad 8Ann)
But the left-hand side implies Ayn & 9A,,. So we get

Cn ™V = P(Agy 43 OA) = P P(Agy 0 O0n) > cP - '/8



For d > 3, P(Ae % dA,) < Cn~1/8,

Let 1 be sufficiently small so that P(A €3 A,) < Cn~ /4 Tet
7 be sufficiently small so that P(A,y <» dA,n) > en~'/%. Denote
P = P(Ay €22 OA). Let Aws © B C Aot and condition
on B =%(An). Let A B. Then

P(B=%(Apv), A é:% OA,) > P-P(B =% (Anv)). Sum over
all such B and get

P(An'y Aad OAnn,‘K( n'y) é:m)$ 8A ) > P- P(An'y Aad 8Ann)
But the left-hand side implies Ayn & 9A,,. So we get

Cn ™V = P(Agy 43 OA) = P P(Agy 0 O0n) > cP - '/8

or P < Cn~1/8, O



Theorem (Chayes, Chayes, Newman, Grimmett, Kesten,

Schonmann...)

For p < p. there is a number, denoted by £(p), such that

P,(0 < 9A,) = e~ E@+oD)n,




Theorem (Chayes, Chayes, Newman, Grimmett, Kesten,

Schonmann...)

For p < p. there is a number, denoted by £(p), such that
P,(0 < OA,,) = e~ (E@+o())n
For p > p. there is a number, also denoted by &(p), such that

P,(0 ¢3 OAp, 0 ¢ 00) = e~ E@+o)n,

The notation A <> oo means |€(A)| = co.



Theorem (Chayes, Chayes, Newman, Grimmett, Kesten,

Schonmann...)

For p < p. there is a number, denoted by £(p), such that
P,(0 ¢ OA,) = e~ E@+o)n,

For p > p. there is a number, also denoted by &(p), such that

P,(0 ¢3 OAp, 0 ¢ 00) = e~ E@+o)n,

The notation A <> oo means |€(A)| = co.

Theorem (Duminil-Copin-K-Tassion)

£(p) < elp—pel™*,




Theorem (Chayes, Chayes, Newman, Grimmett, Kesten,

Schonmann...)

For p < p. there is a number, denoted by £(p), such that
P,(0 < OA,,) = e~ (E@+o())n
For p > p. there is a number, also denoted by &(p), such that

P,(0 ¢3 OAp, 0 ¢ 00) = e~ E@+o)n,

The notation A <> oo means |€(A)| = co.

Theorem (Duminil-Copin-K-Tassion)

£(p) < elp—pel™*,

We will only show a lemma from proof, to demonstrate yet
another use of Cerf’s theorem.



If 0 :=P(0 > 00) > 0

The notation A <+ oo means |¢'(A)| = co.



If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

The notation A <+ oo means |¢'(A)| = co.



Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.

Let m be such that (1 — 6)™ < Ze.
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Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.
Let m be such that (1 —0)™ < %5. Let k be so large such that
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Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.
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Proof.
Let m be such that (1 —0)™ < %5. Let k be so large such that

€

Let K be so large that

P(Ay, &3 OAk) < %




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

| A\

Proof.
Let m be such that (1 —0)™ < %5. Let k be so large such that

€

Let K be so large that

P(Ay, &3 OAk) < %

Define n = 2Km.




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

| A\

Proof.
Let m be such that (1 —0)™ < %5. Let k be so large such that

€

Let K be so large that

P(Ay, &3 OAk) < %

Define n = 2Km. We are now given an A C A,,.




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.
Let m be such that (1 —0)™ < %5. Let k be so large such that

€

Let K be so large that
€
P(A OAg) < —.
(Ax £ 0Ak) e
Define n = 2Km. We are now given an A C A,. Find m

elements aq,...,a, € A such that the translates a; + Ax are
disjoint.




If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.

Let m be such that (1 —0)™ < %5. Let k be so large such that
P(Ay <+ 00) > 1 — 5= Let K be so large that

P(Ax 8 0Ak) < 5. Define n = 2K'm. We are now given an
A C A,. Find m elements aq,...,a, € A such that the

translates a; + A are disjoint. For each a;,
P(a; <> a; + OAk) > 0.




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.

Let m be such that (1 —0)™ < %5. Let k be so large such that
P(Ay <+ 00) > 1 — 5= Let K be so large that

P(Ax 8 0Ak) < 5. Define n = 2K'm. We are now given an
A C A,. Find m elements aq,...,a, € A such that the
translates a; + A are disjoint. For each a;,

P(a; <> a; + OAk) > 0. Since the boxes are disjoint these are
independent and we have

P(Hi:aieai—kaAK)z1—(1—9)m>1—§.




Lemma

If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.

Proof.

Let m be such that (1 —0)™ < %5. Let k be so large such that
P(Ay <+ 00) > 1 — 5= Let K be so large that

P(Ax 8 0Ak) < 5. Define n = 2K'm. We are now given an
A C A,. Find m elements aq,...,a, € A such that the
translates a; + A are disjoint. For each a;,

P(a; <> a; + OAk) > 0. Since the boxes are disjoint these are
independent and we have

P(Hi:aieai—kaAK)z1—(1—9)m>1—§.
On the other hand
2
P(Vi:a; + Ap <> 00,a; + Ap 88 a; + Ag) >1— =, [

3




If 0 :=P(0 <> 00) > 0 then for every e > 0 there exists an n
such that for any set A C A, intersecting both {0} and OA,, we
have P(A <> 00) > 1 —¢.
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Thanks for your
attention!




