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Percolation - de�nitions

Examine the graph Zd, d ≥ 2.

For a p ∈ [0, 1] keep every edge
with probability p and delete it with probability 1− p,
independently for each edge.

There exists some pc ∈ (0, 1) (�the critical p�) such that for p < pc
all components (�clusters�) of the resulting graph are �nite, while
for p > pc there is a unique in�nite cluster. The behaviour at
and near pc is not well understood, except if d = 2 or d > 6.

This minicourse will focus on recent advances around this
problem, with particular emphasis on the growing understanding
of the importance of the Aizenman-Kesten-Newman argument.

(but we will only get to it in the second hour)
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Theorem

Epc(|C (0)|) =∞.

Proof.

Fix p and denote χ = Ep(|C (0)|). Let

ε <
1

4dχ
.

We will show that at p+ ε there is no in�nite cluster. Consider
p+ ε percolation as if we take p-percolation and then �sprinkle�
each edge with probability ε. For a vertex x and a sequence of
directed edges e1, . . . , en, denote by Ex,e1,...,en the event that 0 is
connected to x by a path γ1 in p-percolation from 0 to e−1 then
e1 is sprinkled, then there is a path γ2 from e+

1 to e−2 then e2 is
sprinkled and so on. We end with a path γn+1 from en to x. We
require all the γi to be disjoint. Clearly 0↔ x is p+ ε
percolation if and only if there exist some e1, . . . , en (possibly
empty) such that Ex,e1,...,en hold.
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Epc(|C (0)|) =∞.

Proof.

χ = Ep(|C (0)|), ε < 1/4dχ, Ex,e1,...,en is the event that ∃γi from
e+
i−1 to e−i , disjoint, and all ei are sprinkled.

Pp+ε(0↔ x) ≤
∞∑
n=0

∑
e1,...,en

P(Ex,e1,...,en).

By the BK inequality

≤
∞∑
n=0

∑
e1,...,en

Pp(0↔ e−1 )Pp(e+
1 ↔ e−2 ) · · ·P(e+

n ↔ x)εn

Summing over all x gives

χ(p+ε) ≤
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Pp(0↔ e−1 )Pp(e+
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This is sharp on a tree but not in general.
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For a set S ⊂ Zd denote by ∂S the set of x ∈ S with a
neighbour y 6∈ S.

Theorem

Let S ⊂ Zd be some �nite set containing 0. Then∑
x∈∂S

Ppc(0
S←→ x) ≥ 1.
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Proof sketch.

Let x ∈ Zd. If 0↔ x then there exists 0 = y1, . . . , yn = x such
and open paths γi such that

1 γi is from yi to yi+1 and is contained in yi + S.

2 The γi are disjoint.

And we have n ≥ r|x| for some number r > 0 that depends on
S. A calculation similar to the previous proof shows that

P(0↔ x) ≤
∑
n≥r|x|

( ∑
y∈∂S

Ppc(0
S←→ y)

)n
.
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x∈∂S Ppc(0

S←→ x) ≥ 1.

A full proof can be found in H. Duminil-Copin and V. Tassion,
A new proof of the sharpness of the phase transition for

Bernoulli percolation on Zd, L'Enseignement Mathématique,
62(1/2) (2016), 199-206.

It is the basis for a new, signi�cantly
simpler proof of the following

Theorem (Menshikov‖Aizenman-Barsky)

For any p < pc χ(p) <∞.

(recall that χ(p) = Ep(|C (0)|) and that what we proved before
is χ(pc) =∞).
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Two applications:

Lemma (K-Nachmias, 2011)

For any x ∈ ∂Λn, Λn := [−n, n]d,

Ppc(0
Λn←→ x) ≥ c exp(−C log2 n).

Lemma (Cerf, 2015)

For any x, y ∈ Λn,

Ppc(x
Λ2n←−→ y) ≥ cn−C .

All constants c and C might depend on the dimension.
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Proof.

Assume �rst that x− y = (2k, 0, . . . , 0), k ≤ n.

By the theorem
there exists a z ∈ ∂Λk such that

P(0
Λk←→ z) ≥ 1

2d|∂Λk|
≥ c

kd−1
.

By rotation and re�ection symmetry we may assume z is in
some face of Λk, for example z1 = k. Let z be the re�ection of z
in the �rst coordinate i.e. z = (−z1, z2, . . . , zd). By re�ection

symmetry we also have P(0
Λk←→ z) ≥ ck1−d. Translating z to x

and z to y gives

P(x
x+Λk←−−→ x+ z),P(y

y+Λk←−−→ y + z) ≥ c

kd−1
.

But x+ z = y + z!
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is even. If they are not on a line, we de�ne

x = x0, . . . , xd = y

such that each couple xi, xi+1 di�er by only one coordinate.

Hence P(xi
Λ2n←−→ xi+1) ≥ cn2−2d. Using FKG again gives

P(x
Λ2n←−→ y) ≥ P(x0

Λ2n←−→ x1, x1
Λ2n←−→ x2, . . . , xd−1

Λ2n←−→ xd)

≥
d∏
i=1

P(xi−1
Λ2n←−→ xi) ≥

c

n2d2−2d
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Lemma (Cerf, 2015)

For any x, y ∈ Λn, Ppc(x
Λ2n←−→ y) ≥ cn2d−2d2

.

This was recently improved to cn−d
2
by van den Berg and Don.

Their proof has an interesting topological component.
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Crossing probabilities

Let Λ be a box in Zd, with the side lengths not necessarily
equal. A crossing is an open path from one side of the box to
the other.

Hard way

Easy way

Theorem

Let Λ be an 2n× · · · × 2n× n box in Zd. Then

Ppc(Λ has an easy-way crossing) > c

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in d = 2 so let us do this. Let p(a, b) be the
probability of an easy-way crossing of an a× b rectangle. We
�rst claim that p(4n, n) ≤ 5p(2n, n).
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Let Λ be an 2n× · · · × 2n× n box in Zd. Then

Ppc(Λ has an easy-way crossing) > c

Proof.

It is easier to draw in d = 2 so let us do this. Let p(a, b) be the
probability of an easy-way crossing of an a× b rectangle. We
�rst claim that p(4n, n) ≤ 5p(2n, n).

This is because if some
path γ crosses from the top to the bottom of a 4n× n rectangle,
it must cross either one of 3 horizontal rectangles or one of two
vertical ones. We next claim that p(4n, 2n) ≤ p(4n, n)2. But
that means that p(4n, 2n) ≤ 25p(2n, n)2 and inductively that

p(2k+1n, 2kn) ≤ 252k−1p(2n, n)2k . Thus, if for some n,
p(2n, n) < 1

25 , then it decays exponentially, contradicting the
result that χ(pc) =∞.
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that means that p(4n, 2n) ≤ 25p(2n, n)2 and inductively that

p(2k+1n, 2kn) ≤ 252k−1p(2n, n)2k . Thus, if for some n,
p(2n, n) < 1

25 , then it decays exponentially, contradicting the
result that χ(pc) =∞.



skip to diagram

Crossing probabilities

Theorem

Let Λ be an 2n× · · · × 2n× n box in Zd. Then

Ppc(Λ has an easy-way crossing) > c

It is natural to ask if there is a corresponding upper bound,
namely is it true that

Ppc(Λ has an easy-way crossing) ≤ 1− c
for some c > 0? This is true when d = 2. It is false for d > 6, in
fact

Ppc(Λ has an easy-way crossing)→ 1 as n→∞.
It is not known in intermediate dimensions. In dimensions 2 and
high, there is no signi�cant di�erence between easy-way and
hard-way crossing. In intermediate dimensions this is not
known.
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One arm exponent

Theorem

P(0↔ ∂Λn) > c/n(d−1)/2.

Proof.

By the previous theorem we know that the box
[−n/2, n/2]× [−n, n]× · · · × [−n, n] has an easy-way crossing
with probability at least c. �Easy-way� means from
{n/2} × [−n, n]d−1 to {−n/2} × [−n, n]d−1 so it must cross
0× [−n, n]d−1. Therefore there exists some x ∈ {0} × [−n, n]d−1

such that the probability that the crossing pass through it is at
least c/nd−1. But if it does, then x is connected to distance at
least n/2 by two disjoint paths. The BK inequality �nishes the
proof.

In d = 2 Kesten improved this to n−1/3.
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Dependencies diagram

χ(pc) = ∞

∑
x∈∂Λn

Ppc(0
Λn←→ x) ≥ 1 Ppc(crossing) > c

Ppc(x
Λ2n←−→ y) > cn−C Ppc(0 ↔ ∂Λn) > cn(1−d)/2



The

Aizenman-Kesten-Newman

argument



Exploration and martingales

Lemma

Let E be the number of open edges in C (0) and let B be the

number of closed edges in its boundary.

Let λ > 0 be some

parameter. Then

Pp(B + E ≤ n, |(1− p)E − pB| > λ
√
n) ≤ Ce−cλ2

.

Proof.

We de�ne sets of edges ∅ = S0 ⊂ S1 ⊂ · · · for i ≤ n as follows.
Assume at step i there exists some edge e 6∈ Si such that there is
an open path in Si from 0 to one of the vertices of e. We choose
one such e arbitrarily and de�ne Si+1 := Si ∪ {e}. If no such e
exists (and this happens when |Si| = B + E), let Si+1 = Si. Let
Xi be 1− p times the number of open edges in Si minus p times
the number of closed edges in Si. Then Xi is a martingale. The
lemma follows from Azuma-Hoe�ding.
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This is a �exible argument. You can start from a set of vertices
(not just one), and you can add additional stopping conditions.

For example,

Lemma

Let S ⊂ Λ be the set of vertices connected to the boundary. Let

E be the number of open edges between vertices of S and let B
be the number of closed edges with at least one vertex in S and

both vertices in Λ. Let X = (1− p)E − pB. Then

P(|X| > λnd/2) ≤ e−cλ2
.
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Notation

Let A, B be subsets of E ⊆ Zd. We denote by

A
E←→←→ B

the event that there are two disjoint clusters in E which

intersect both A and B.

We will use very often A
E←→←→ ∂E and in

this case we omit the superscript, i.e. write A←→←→ ∂E.
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Theorem

Let V be the number of edges (x, y) in Λn such that

{x, y} ←→←→ ∂Λn i.e. both x and y are connected to ∂Λn but x
Λn= y.

Then E(V ) < Cnd−1/2
√

log n.

Proof (Gandol�-Grimmett-Russo).

For an S ⊆ Λn de�ne X(S) to be 1− p times the number of
open edges between two vertices of S minus p times the number
of closed edges with at least one vertex in S and both vertices in
Λn. Let C1,C2, . . . be all the clusters in Λn that touch the
boundary. Then

X
(⋃

i

Ci
)
−
∑
i

X(Ci) = pV.

The exploration argument shows that with high probability∣∣∣X(⋃
i

Ci
)∣∣∣ < Cnd/2

√
log n |X(Ci)| < C

√
|Ci|
√

log n ∀i.
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{x, y} ←→←→ ∂Λn. Then E(V ) < Cnd−1/2
√
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Corollary

For x a neighbour of 0,

P({0, x} ←→←→ ∂Λn) < C

√
log n

n
.

A �exible argument: by changing from where you explore you
can get all kinds of results. For example, if L is the union of all
clusters reaching the left side of Λn and R is the union of all
clusters reaching the right side of Λn then

X(L ∪R)−X(L)−X(R)

teaches something about edges connected to both the left and
the right. Hutchcroft has a version where one explores from
random points.
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Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Recall from the previous slide

Corollary

For x a neighbour of 0, P({0, x} ←→←→ ∂Λn) < C
√

(log n)/n.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter).

Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

.

It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk.

Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

A
B



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk.

With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y.

The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.

Let k < 1
2n be some number (it will be nc eventually, but for

now let us keep it a parameter). Recall the lemma from the

previous hour: For any x, y ∈ Λk, Ppc(x
Λ2k←−→ y) > ck2d−2d2

. It
gives

Lemma

Let A, B ⊂ Λ2k, both intersecting Λk. Then

Ppc(A
Λ2k\A∪B←−−−−−→ B) > ck2d−2d2

.

Proof.

Let x ∈ A ∩ Λk and y ∈ B ∩ Λk. With probability at least
ck2d−2d2

there is an open path γ from x to y. The portion of γ
from its last vertex in A until the �rst vertex in B after it
demonstrates the lemma.



Theorem (Cerf, 2015)

Ppc(Λnc ←→←→ ∂Λn) ≤ Cn−c for c > 0 small enough.
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Ppc(A
Λ2k\A∪B←−−−−→ B) > ck2d−2d2

.

Denote P := P(Λk ←→←→ ∂Λn).

Lemma

Let E be the event that there exist edges e,f ∈ Λ2k such that

∂Λn ↔ e−,e+ ↔ f−,f+ ↔ ∂Λn but e− = e+, f− = f+ and

e− = f+. Then Ppc(E) ≥ ck−2d2
P .

Proof.

There exist some x, y ∈ Λk such that with probability k−2dP ,
x↔ ∂Λn, y ↔ ∂Λn and x= y. Condition on C (x) and C (y).
Use the previous lemma with A = C (x) i.e. C (x) with its

immediate neighbourhood and B = C (y). A
Λ2k\A∪B←−−−−→ B is

independent of the conditioning.
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For given edges e and f denote by Ee,f the event as in the
lemma (so E =

⋃
Ee,f ). Choose some e and f such that

P(Ee,f ) ≥ ck−2d2−2dP . The event E∗e,f that �Ee,f would have
been satis�ed had e been closed, but it's open� satis�es
P(E∗e,f ) ≈ P(Ee,f ). But E∗e,f implies f ←→←→ ∂Λn, which has

probability ≤ C
√

(log n)/n. All in all we get

C

√
log n

n
≥ P(E∗e,f ) ≥ cP(Ee,f ) ≥ ck−2d2−2dP.

Choosing k = n1/(8d2+8d) proves the theorem.
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Theorem (Cerf, 2015)

Ppc(Λn1/(8d2+8d)−o(1)
←→←→ ∂Λn) ≤ Cn−1/4.

The theorem actually holds for all p.
Cerf had the a scheme for improving the exponents.

Unfortunately, the end result was

P({0, x} ←→←→ ∂Λn) ≤ n−
2d2+3d−3

4d2+5d−5
+o(1)

which is not a big improvement over 1
2 , say in d = 3 it gives

12
23 .

De�nition

Let η be some positive number smaller than 1
8d2+8d

.



Theorem (Cerf, 2015)

Ppc(Λn1/(8d2+8d)−o(1)
←→←→ ∂Λn) ≤ Cn−1/4.

The theorem actually holds for all p.

Cerf had the a scheme for improving the exponents.

Unfortunately, the end result was

P({0, x} ←→←→ ∂Λn) ≤ n−
2d2+3d−3

4d2+5d−5
+o(1)

which is not a big improvement over 1
2 , say in d = 3 it gives

12
23 .

De�nition

Let η be some positive number smaller than 1
8d2+8d

.



Theorem (Cerf, 2015)

Ppc(Λn1/(8d2+8d)−o(1)
←→←→ ∂Λn) ≤ Cn−1/4.

The theorem actually holds for all p.
Cerf had the a scheme for improving the exponents.

Get a better estimate
for P(Λnc ←→←→ ∂Λn)

Get a better estimate
for the number of
clusters from ∂Λ2n

to ∂Λn

Get a better estimate
for P({0, x} ←→←→ ∂Λ)

∑√
|C |

Unfortunately, the end result was

P({0, x} ←→←→ ∂Λn) ≤ n−
2d2+3d−3

4d2+5d−5
+o(1)

which is not a big improvement over 1
2 , say in d = 3 it gives

12
23 .

De�nition

Let η be some positive number smaller than 1
8d2+8d

.



Theorem (Cerf, 2015)

Ppc(Λn1/(8d2+8d)−o(1)
←→←→ ∂Λn) ≤ Cn−1/4.

The theorem actually holds for all p.
Cerf had the a scheme for improving the exponents.
Unfortunately, the end result was

P({0, x} ←→←→ ∂Λn) ≤ n−
2d2+3d−3

4d2+5d−5
+o(1)

which is not a big improvement over 1
2 , say in d = 3 it gives

12
23 .

De�nition

Let η be some positive number smaller than 1
8d2+8d

.



Theorem (Cerf, 2015)

Ppc(Λn1/(8d2+8d)−o(1)
←→←→ ∂Λn) ≤ Cn−1/4.

The theorem actually holds for all p.
Cerf had the a scheme for improving the exponents.
Unfortunately, the end result was

P({0, x} ←→←→ ∂Λn) ≤ n−
2d2+3d−3

4d2+5d−5
+o(1)

which is not a big improvement over 1
2 , say in d = 3 it gives

12
23 .

De�nition

Let η be some positive number smaller than 1
8d2+8d

.



Theorem (Cerf, 2015)
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Lemma

Call a cluster C in Λn �large� if it intersects 7
8 of the cubes of

side-length nη in Λn.

Then

Ppc(∃ large cluster) ≤ 1− c.

Proof.

Denote the event by E. Assume both E and its translation by
(n/2, 0, . . . , 0) occurred (call the translates Λ′, C ′ and E′). Then
there at least 1

4 of the nη cubes in Λ ∩ Λ′ intersect both C and
C ′. If C 6= C ′ then each of these cubes satis�es the two disjoint
clusters event. Hence by Cerf's theorem and Markov's inequality

Ppc(E ∩ E′ ∩ {C 6= C ′}) ≤ Cn−1/4.
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4 of the nη cubes in Λ ∩ Λ′ intersect both C
and C ′. If C 6= C ′ then each of these cubes satis�es the two
disjoint clusters event. Hence by Cerf's theorem and Markov's
inequality Ppc(E ∩ E′ ∩ {C 6= C ′}) ≤ Cn−1/4.

Hence

Ppc(C = C ′) ≥ 1− 2c1 − Cn−1/4.

By continuity, the same inequality will hold for a slightly
smaller p. By a theorem of Liggett, Schonmann and Stacey
(1997), if c1 is su�ciently small and n su�ciently large, then an
in�nite cluster exists, contradicting p < pc.
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side-length nη in Λn. Then Ppc(∃ large cluster) ≤ 1− c.

The same argument works for clusters Λ2n (or any constant),
i.e. we de�ne the cluster by connections in Λ2n but still ask only
about intersections with subcubes of Λn.

The proof is the same,
only the �distance of independence� in
Liggett-Schonmann-Stacey needs to be increased.
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Call a cluster C in Λ2n �large� if it intersects 7
8 of the cubes of

side-length nη in Λn. Then Ppc(∃ large cluster) ≤ 1− c.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For d ≥ 3 and some ν = ν(d) > 0, Ppc(Λnν = ∂Λn) > Cn−d.

Proof.

A =⇒ {all nν boxes in Λn/4 are connected to ∂Λn/2}. For
every cluster C let N(C ) be the number of nν-subboxes of Λn/2
that intersect C . Under A we have,
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Let N(C ) be the number of nν-subboxes of Λn/2 that intersect

C . E
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C smallN(C )(d−1)/d ≥ cn(1−ν)(d−1).

Let us return to the
proof of Gandol�-Grimmett-Russo. In fact it shows that

P(0←→←→ ∂Λn/4) ≤ Cn−d/2 + C(log n)n−dE
∑
C

√
|C |.

where the sum is over clusters in Λn/2. A variation on the
argument, also due to Cerf, shows that one can take the sum
only over C in Λn that intersect Λn/4 and ∂Λn/2. And with
Cerf's lemma,

P(Λ2nν ←→←→ ∂Λn/4) ≤ CnCνP(0←→←→ ∂Λn/4)

≤ Cn−d/2+Cν + Cn−d+CνE
∑
C

√
N(C ).
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Thus, under A, there are c
∑

C smallN(C )(d−1)/d boxes of size
2nν in Λn/2 which are connected to distance n/4 by two disjoint
clusters. There is some over-counting in this argument, every
2nν box might be counted for every cluster that intersects it.
We bound the over-counting crudely by the volume of the box,
Cndν . Under A,

#{such boxes} ≥ cn−dν
∑

C small

N(C )(d−1)/d.

Taking expectations gives

Cn(1−ν)dP(Λ2nν ←→←→ ∂Λn/4) ≥ cn−dνE
∑
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N(C )(d−1)/d.

Together these give

E
∑
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N(C )(d−1)/d ≤ Cnd/2+Cν + CnCν
∑
C

E
√
N(C ).
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We may add the requirement �C small� on the right hand side,
as the possible large clusters can only add a factor of Cnd/2+Cν .
Since our clusters all touch both Λn/4 and ∂Λn/2 we must have
N(C ) > cn1−ν for all C . Thus∑

C small

√
N(C ) ≤ Cn−(1−ν)(d−2)/d

∑
C small

N(C )(d−1)/d.

For ν su�ciently small, we reach a contradiction.
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For d ≥ 3 and some ν = ν(d) > 0, Ppc(Λnν = ∂Λn) > Cn−d.

The proof in a nutshell

The Aizenman-Kesten-Newman-Cerf argument gives

P(Λnν ←→←→ Λn) ≤ uninteresting terms n−d
∑√

|C |.

The contradictory assumption, the isoperimetric inequality and
the fact that there are no large clusters give

P(Λnν ←→←→ Λn) ≥ uninteresting terms n−d
∑
|C |(d−1)/d.

And these two contradict.
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For d ≥ 3 and some ν = ν(d) > 0, Ppc(Λnν = ∂Λn) > Cn−d.

Going through the calculation gives

ν <
d− 2

d3 + 4d2 + d− 2

so, say, 1/64 at d = 3.

The theorem holds also at d = 2 (known since the 80s, with
a di�erent proof).
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Dependencies diagram II

χ(pc) = ∞

∑
x∈∂Λn

Ppc(0
Λn←→ x) ≥ 1 Ppc(crossing) > c

Ppc(x
Λ2n←−→ y) > cn−C Ppc(0 ↔ ∂Λn) > cn(1−d)/2

Ppc(Λnc ←→←→ Λn) > cn−1/4

Ppc(∃ large cluster) < 1− c Ppc(Λnc = ∂Λn) > Cn−d



Theorem

For d ≥ 3, P(Λnc
Λn\Λnc←−−−→←−−−→ ∂Λn) ≤ Cn−1/8.

Let Λnγ ⊆ B ⊆ Λnη−1 and condition on B = C (Λnγ ). Let
A = B. Outside A, the conditioning has no e�ect. Use the
lemma and get

P(B = C (Λnγ ), A
Λn\A←−−→←−−→ ∂Λn) ≥ P · P(B = C (Λnγ )).
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Λn\Λnγ←−−−→←−−−→ ∂Λn) (i.e. we need to show that P is small).
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For any A ⊇ Λnγ , P(A
Λn\A←−−→←−−→ ∂Λn) ≥ P .

Let Λnγ ⊆ B ⊆ Λnη−1 and condition on B = C (Λnγ ). Let
A = B. Outside A, the conditioning has no e�ect. Use the
lemma and get

P(B = C (Λnγ ), A
Λn\A←−−→←−−→ ∂Λn) ≥ P · P(B = C (Λnγ )).



Theorem

For d ≥ 3, P(Λnc
Λn\Λnc←−−−→←−−−→ ∂Λn) ≤ Cn−1/8.

Let η be su�ciently small so that P(Λnη ←→←→ Λn) ≤ Cn−1/4. Let

γ be su�ciently small so that P(Λnγ = ∂Λnη) > cn−1/8. Denote

P = P(Λnγ
Λn\Λnγ←−−−→←−−−→ ∂Λn). Let Λnγ ⊆ B ⊆ Λnη−1 and condition

on B = C (Λnγ ). Let A = B. Then

P(B = C (Λnγ ), A
Λn\A←−−→←−−→ ∂Λn) ≥ P · P(B = C (Λnγ )).

Sum over

all such B and get

P(Λnγ = ∂Λnη ,C (Λnγ )
Λn\C (Λnγ )←−−−−−−→←−−−−−−→ ∂Λn) ≥ P · P(Λnγ = ∂Λnη)

But the left-hand side implies Λnη ←→←→ ∂Λn.
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Theorem (Chayes, Chayes, Newman, Grimmett, Kesten,
Schonmann...)

For p < pc there is a number, denoted by ξ(p), such that

Pp(0↔ ∂Λn) = e−(ξ(p)+o(1))n.

For p > pc there is a number, also denoted by ξ(p), such that

Pp(0↔ ∂Λn, 0 =∞) = e−(ξ(p)+o(1))n.

The notation A↔∞ means |C (A)| =∞.

Theorem (Duminil-Copin-K-Tassion)

ξ(p) ≤ e|p−pc|−2
.

We will only show a lemma from proof, to demonstrate yet
another use of Cerf's theorem.
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Lemma

If θ := P(0↔∞) > 0

then for every ε > 0 there exists an n
such that for any set A ⊆ Λn intersecting both {0} and ∂Λn we

have P(A↔∞) > 1− ε.

The notation A↔∞ means |C (A)| =∞.
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Lemma

If θ := P(0↔∞) > 0 then for every ε > 0 there exists an n
such that for any set A ⊆ Λn intersecting both {0} and ∂Λn we

have P(A↔∞) > 1− ε.

Proof.

Let m be such that (1− θ)m < 1
3ε.

Let k be so large such that

P(Λk ↔∞) ≥ 1− ε

3m
.

Let K be so large that

P(Λk ←→←→ ∂ΛK) <
ε

3m
.

De�ne n = 2Km. We are now given an A ⊆ Λn. Find m
elements a1, . . . , am ∈ A such that the translates ai + ΛK are
disjoint. For each ai, P(ai ↔ ai + ∂ΛK) ≥ θ. Since the boxes
are disjoint these are independent and we have

P(∃i : ai ↔ ai + ∂ΛK) ≥ 1− (1− θ)m > 1− ε

3
.

On the other hand

P(∀i : ai + Λk ↔∞, ai + Λk 6←→←→ ai + ΛK) > 1− 2ε

3
.
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attention!

Thanks for your


