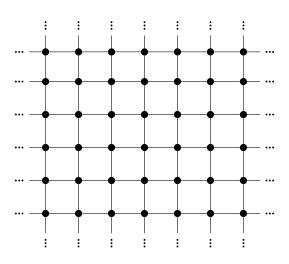
# Critical percolation

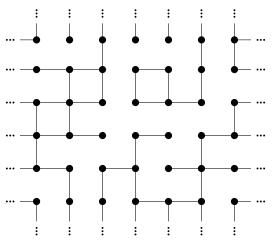
Gady Kozma

Online Open Probability School, 2020

Examine the graph  $\mathbb{Z}^d$ ,  $d \geq 2$ .



Examine the graph  $\mathbb{Z}^d$ ,  $d \geq 2$ . For a  $p \in [0, 1]$  keep every edge with probability p and delete it with probability 1 - p, independently for each edge.



Examine the graph  $\mathbb{Z}^d$ ,  $d \geq 2$ . For a  $p \in [0,1]$  keep every edge with probability p and delete it with probability 1-p, independently for each edge. There exists some  $p_c \in (0,1)$  ("the critical p") such that for  $p < p_c$  all components ("clusters") of the resulting graph are finite, while for  $p > p_c$  there is a unique infinite cluster.

Examine the graph  $\mathbb{Z}^d$ ,  $d \geq 2$ . For a  $p \in [0,1]$  keep every edge with probability p and delete it with probability 1-p, independently for each edge. There exists some  $p_c \in (0,1)$  ("the critical p") such that for  $p < p_c$  all components ("clusters") of the resulting graph are finite, while for  $p > p_c$  there is a unique infinite cluster. The behaviour at and near  $p_c$  is not well understood, except if d = 2 or d > 6.

Examine the graph  $\mathbb{Z}^d$ ,  $d \geq 2$ . For a  $p \in [0,1]$  keep every edge with probability p and delete it with probability 1-p, independently for each edge. There exists some  $p_c \in (0,1)$  ("the critical p") such that for  $p < p_c$  all components ("clusters") of the resulting graph are finite, while for  $p > p_c$  there is a unique infinite cluster. The behaviour at and near  $p_c$  is not well understood, except if d = 2 or d > 6.

This minicourse will focus on recent advances around this problem, with particular emphasis on the growing understanding of the importance of the Aizenman-Kesten-Newman argument. (but we will only get to it in the second hour)

Theorem  $\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$ 

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster.

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster. Consider  $p + \varepsilon$  percolation as if we take p-percolation and then "sprinkle" each edge with probability  $\varepsilon$ .

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

## Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster. Consider  $p + \varepsilon$  percolation as if we take p-percolation and then "sprinkle" each edge with probability  $\varepsilon$ . For a vertex x and a sequence of directed edges  $e_1, \ldots, e_n$ , denote by  $E_{x,e_1,\ldots,e_n}$  the event that 0 is connected to x by a path  $\gamma_1$  in p-percolation from 0 to  $e_1^-$ 

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster. Consider  $p + \varepsilon$  percolation as if we take p-percolation and then "sprinkle" each edge with probability  $\varepsilon$ . For a vertex x and a sequence of directed edges  $e_1, \ldots, e_n$ , denote by  $E_{x,e_1,\ldots,e_n}$  the event that 0 is connected to x by a path  $\gamma_1$  in p-percolation from 0 to  $e_1^-$  then  $e_1$  is sprinkled, then there is a path  $\gamma_2$  from  $e_1^+$  to  $e_2^-$  then  $e_2$  is sprinkled and so on.

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster. Consider  $p + \varepsilon$  percolation as if we take p-percolation and then "sprinkle" each edge with probability  $\varepsilon$ . For a vertex x and a sequence of directed edges  $e_1, \ldots, e_n$ , denote by  $E_{x,e_1,\ldots,e_n}$  the event that 0 is connected to x by a path  $\gamma_1$  in p-percolation from 0 to  $e_1^-$  then  $e_1$  is sprinkled, then there is a path  $\gamma_2$  from  $e_1^+$  to  $e_2^-$  then  $e_2$  is sprinkled and so on. We end with a path  $\gamma_{n+1}$  from  $e_n$  to x. We require all the  $\gamma_i$  to be disjoint.

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

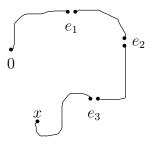
## Proof.

Fix p and denote  $\chi = \mathbb{E}_p(|\mathscr{C}(0)|)$ . Let

$$\varepsilon < \frac{1}{4d\chi}.$$

We will show that at  $p + \varepsilon$  there is no infinite cluster. Consider  $p + \varepsilon$  percolation as if we take p-percolation and then "sprinkle" each edge with probability  $\varepsilon$ . For a vertex x and a sequence of directed edges  $e_1, \ldots, e_n$ , denote by  $E_{x,e_1,\ldots,e_n}$  the event that 0 is connected to x by a path  $\gamma_1$  in p-percolation from 0 to  $e_1^-$  then  $e_1$  is sprinkled, then there is a path  $\gamma_2$  from  $e_1^+$  to  $e_2^-$  then  $e_2$  is sprinkled and so on. We end with a path  $\gamma_{n+1}$  from  $e_n$  to x. We require all the  $\gamma_i$  to be disjoint. Clearly  $0 \leftrightarrow x$  is  $p + \varepsilon$  percolation if and only if there exist some  $e_1, \ldots, e_n$  (possibly empty) such that  $E_{x,e_1,\ldots,e_n}$  hold.

 $\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$ 



$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

## Proof.

 $\chi = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi, \, E_{x,e_1,\dots,e_n}$  is the event that  $\exists \gamma_i$  from  $e_{i-1}^+$  to  $e_i^-$ , disjoint, and all  $e_i$  are sprinkled.

$$\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \le \sum_{n=0}^{\infty} \sum_{e_1, \dots, e_n} \mathbb{P}(E_{x, e_1, \dots, e_n}).$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proo<u>f.</u>

 $\chi = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi, \, E_{x,e_1,\dots,e_n}$  is the event that  $\exists \gamma_i$  from  $e_{i-1}^+$  to  $e_i^-$ , disjoint, and all  $e_i$  are sprinkled.

$$\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \le \sum_{n=0}^{\infty} \sum_{e_1, \dots, e_n} \mathbb{P}(E_{x, e_1, \dots, e_n}).$$

By the BK inequality

$$\leq \sum_{n=0} \sum_{e_1, \dots, e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}(e_n^+ \leftrightarrow x) \varepsilon^n$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

## Proof.

 $\chi = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi, \, E_{x,e_1,\dots,e_n} \text{ is the event that } \exists \gamma_i \text{ from } e_{i-1}^+ \text{ to } e_i^-, \text{ disjoint, and all } e_i \text{ are sprinkled.}$ 

$$\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \le \sum_{n=1}^{\infty} \sum_{x \in \mathbb{Z}_{p+\varepsilon}} \mathbb{P}(E_{x,e_1,\dots,e_n}).$$

By the BK inequality

$$\leq \sum_{n=0}^{\infty} \sum_{e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}(e_n^+ \leftrightarrow x) \varepsilon^n$$

Summing over all x gives

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{n=0}^{\infty} \mathbb{P}_{p}(0 \leftrightarrow e_{1}^{-}) \mathbb{P}_{p}(e_{1}^{+} \leftrightarrow e_{2}^{-}) \cdots \mathbb{P}_{p}(e_{n}^{+} \leftrightarrow x).$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x).$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x).$$

Summing over x gives one  $\chi(p)$  term which we can take out of the sum

$$=\sum_{n=0}^{\infty}\varepsilon^n\chi(p)\sum_{n=0}^{\infty}\mathbb{P}_p(0\leftrightarrow e_1^-)\mathbb{P}_p(e_1^+\leftrightarrow e_2^-)\cdots\mathbb{P}_p(e_{n-1}^+\leftrightarrow e_n^-).$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x).$$

Summing over x gives one  $\chi(p)$  term which we can take out of the sum

$$= \sum_{n=0}^{\infty} \varepsilon^n \chi(p) \sum_{n=0}^{\infty} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_{n-1}^+ \leftrightarrow e_n^-).$$

 $e_n^+$  has 2d possibilities. Summing over  $e_n^-$  gives another  $\chi$  term. Taking both out of the sum gives

$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot 2d\chi(p)^2 \sum_{e_1, \dots, e_{n-1}} \mathbb{P}_p(0 \leftrightarrow e_1^-) \cdots \mathbb{P}_p(e_{n-2}^+ \leftrightarrow e_{n-1}^-).$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \le \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$

$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1}$$

$$= \sum \varepsilon^n \cdot (2d)^n \chi(p)^{n+1}$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \le \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$

$$= \sum_{n=0}^{\infty} \varepsilon^{n} \cdot (2d)^{n} \chi(p)^{n+1} < \infty.$$

$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \le \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$

$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty.$$

This shows that  $p + \varepsilon \leq p_c$ .

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

# Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x, e_1, \dots, e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$

$$=\sum_{n=0}^{\infty}\varepsilon^n\cdot(2d)^n\chi(p)^{n+1}<\infty.$$

This shows that  $p + \varepsilon \leq p_c$ . The theorem is then proved by contradiction.

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

#### Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \ \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$
$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty.$$

This shows that  $p + \varepsilon \leq p_c$ . The theorem is then proved by contradiction.

The argument also gives

$$\chi(p) \ge \frac{1}{4d(p_c - p)} \quad \forall p < p_c.$$

$$\mathbb{E}_{p_c}(|\mathscr{C}(0)|) = \infty.$$

## Proof.

$$\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|), \, \varepsilon < 1/4d\chi(p),$$

$$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\dots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$$
$$= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty.$$

This shows that  $p + \varepsilon \leq p_c$ . The theorem is then proved by contradiction.

The argument also gives

$$\chi(p) \ge \frac{1}{4d(p_c - p)} \quad \forall p < p_c.$$

This is sharp on a tree but not in general.

# Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \overset{S}{\longleftrightarrow} x) \ge 1.$$

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \overset{S}{\longleftrightarrow} x) \ge 1.$$

# Proof sketch.

Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

 $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \ge 1.$$

# Proof sketch.

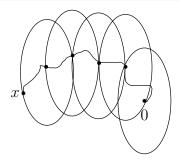
Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

- $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .
- 2 The  $\gamma_i$  are disjoint.

# Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \ge 1.$$



#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \ge 1.$$

# Proof sketch.

Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

- $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .
- $\circ$  The  $\gamma_i$  are disjoint.

And we have  $n \ge r|x|$  for some number r > 0 that depends on S.

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \ge 1.$$

# Proof sketch.

Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

- $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .
- 2 The  $\gamma_i$  are disjoint.

And we have  $n \ge r|x|$  for some number r > 0 that depends on S. A calculation similar to the previous proof shows that

$$\mathbb{P}(0 \leftrightarrow x) \le \sum_{n > r|x|} \left( \sum_{y \in \partial S} \mathbb{P}_{p_c}(0 \overset{S}{\longleftrightarrow} y) \right)^n.$$

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

# Proof sketch.

Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

- $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .
- **2** The  $\gamma_i$  are disjoint.

And we have  $n \ge r|x|S$ . A calculation similar to the previous proof shows that

$$\mathbb{P}(0 \leftrightarrow x) \le \sum_{x \ge r|x|} \left( \sum_{y \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} y) \right)^n.$$

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

# Proof sketch.

Let  $x \in \mathbb{Z}^d$ . If  $0 \leftrightarrow x$  then there exists  $0 = y_1, \dots, y_n = x$  such and open paths  $\gamma_i$  such that

- $\bullet$   $\gamma_i$  is from  $y_i$  to  $y_{i+1}$  and is contained in  $y_i + S$ .
- 2 The  $\gamma_i$  are disjoint.

And we have  $n \ge r|x|S$ . A calculation similar to the previous proof shows that

$$\mathbb{P}(0 \leftrightarrow x) \le \sum_{n > r|x|} \Big( \sum_{y \in \partial S} \mathbb{P}_{p_c}(0 \overset{S}{\longleftrightarrow} y) \Big)^n.$$

If the value in the parenthesis is smaller than 1 then  $\mathbb{P}(0 \leftrightarrow x)$  decays exponentially in |x|, contradicting the previous theorem.

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on  $\mathbb{Z}^d$ , L'Enseignement Mathématique, 62(1/2) (2016), 199-206.

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on  $\mathbb{Z}^d$ , L'Enseignement Mathématique, 62(1/2) (2016), 199-206. It is the basis for a new, significantly simpler proof of the following

## Theorem (Menshikov||Aizenman-Barsky)

For any  $p < p_c \chi(p) < \infty$ .

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on  $\mathbb{Z}^d$ , L'Enseignement Mathématique, 62(1/2) (2016), 199-206. It is the basis for a new, significantly simpler proof of the following

## Theorem (Menshikov||Aizenman-Barsky)

For any  $p < p_c \chi(p) < \infty$ .

(recall that  $\chi(p) = \mathbb{E}_p(|\mathscr{C}(0)|)$  and that what we proved before is  $\chi(p_c) = \infty$ ).

#### Theorem

Let  $S \subset \mathbb{Z}^d$  be some finite set containing 0. Then  $\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$ .

Two applications:

## Lemma (K-Nachmias, 2011)

For any  $x \in \partial \Lambda_n$ ,  $\Lambda_n := [-n, n]^d$ ,

$$\mathbb{P}_{p_c}(0 \stackrel{\Lambda_n}{\longleftrightarrow} x) \ge c \exp(-C \log^2 n).$$

### Lemma (Cerf, 2015)

For any  $x, y \in \Lambda_n$ ,

$$\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}.$$

All constants c and C might depend on the dimension.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

## Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ .

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that x - y = (2k, 0, ..., 0),  $k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|}$$

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, ..., 0), k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

## Lemma ( $\overline{\text{Cerf}}, 2015$ )

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that x - y = (2k, 0, ..., 0),  $k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of  $\Lambda_k$ , for example  $z_1 = k$ .

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that x - y = (2k, 0, ..., 0),  $k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of  $\Lambda_k$ , for example  $z_1 = k$ . Let  $\overline{z}$  be the reflection of z in the first coordinate i.e.  $\overline{z} = (-z_1, z_2, \ldots, z_d)$ .

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, ..., 0), k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of  $\Lambda_k$ , for example  $z_1 = k$ . Let  $\overline{z}$  be the reflection of z in the first coordinate i.e.  $\overline{z} = (-z_1, z_2, \dots, z_d)$ . By reflection symmetry we also have  $\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} \overline{z}) \geq ck^{1-d}$ .

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{n_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that x - y = (2k, 0, ..., 0),  $k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of  $\Lambda_k$ , for example  $z_1 = k$ . Let  $\overline{z}$  be the reflection of z in the first coordinate i.e.  $\overline{z} = (-z_1, z_2, \ldots, z_d)$ . By reflection symmetry we also have  $\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} \overline{z}) \geq ck^{1-d}$ . Translating z to x and  $\overline{z}$  to y gives

$$\mathbb{P}(x \xleftarrow{x+\Lambda_k} x+z), \mathbb{P}(y \xleftarrow{y+\Lambda_k} y+\overline{z}) \geq \frac{c}{k^{d-1}}.$$

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, ..., 0), k \le n$ . By the theorem there exists a  $z \in \partial \Lambda_k$  such that

$$\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} z) \ge \frac{1}{2d|\partial \Lambda_k|} \ge \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of  $\Lambda_k$ , for example  $z_1 = k$ . Let  $\overline{z}$  be the reflection of z in the first coordinate i.e.  $\overline{z} = (-z_1, z_2, \ldots, z_d)$ . By reflection symmetry we also have  $\mathbb{P}(0 \stackrel{\Lambda_k}{\longleftrightarrow} \overline{z}) \geq ck^{1-d}$ . Translating z to x and  $\overline{z}$  to y gives

$$\mathbb{P}(x \overset{x+\Lambda_k}{\longleftrightarrow} x+z), \mathbb{P}(y \overset{y+\Lambda_k}{\longleftrightarrow} y+\overline{z}) \ge \frac{c}{k^{d-1}}.$$

But  $x + z = y + \overline{z}!$ 

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, ..., 0), k \le n$ . Then there exists a z such that

$$\mathbb{P}(x \overset{x+\Lambda_k}{\longleftrightarrow} x+z), \mathbb{P}(y \overset{y+\Lambda_k}{\longleftrightarrow} x+z) \ge \frac{c}{k^{d-1}}.$$

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ . Then there exists a z such that

$$\mathbb{P}(x \xleftarrow{x + \Lambda_k} x + z), \mathbb{P}(y \xleftarrow{y + \Lambda_k} x + z) \geq \frac{c}{\iota \cdot d - 1}.$$

Since  $x + \Lambda_k \subset \Lambda_{2n}$  and ditto for  $y + \Lambda_k$  we can write

$$\mathbb{P}(x \overset{\Lambda_{2n}}{\longleftrightarrow} x + z), \mathbb{P}(y \overset{\Lambda_{2n}}{\longleftrightarrow} x + z) \ge \frac{c}{k^{d-1}}.$$

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that  $x-y=(2k,0,\ldots,0),\,k\leq n.$  Then there exists a z such that

$$\mathbb{P}(x \overset{x+\Lambda_k}{\longleftrightarrow} x+z), \mathbb{P}(y \overset{y+\Lambda_k}{\longleftrightarrow} x+z) \ge \frac{c}{k^{d-1}}.$$

Since  $x + \Lambda_k \subset \Lambda_{2n}$  and ditto for  $y + \Lambda_k$  we can write

$$\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} x + z), \mathbb{P}(y \stackrel{\Lambda_{2n}}{\longleftrightarrow} x + z) \ge \frac{c}{k^{d-1}}.$$

By FKG

$$\mathbb{P}(x \overset{\Lambda_{2n}}{\longleftrightarrow} y) \ge \mathbb{P}(x \overset{\Lambda_{2n}}{\longleftrightarrow} x + z, y \overset{\Lambda_{2n}}{\longleftrightarrow} y + \overline{z}) \ge \frac{c}{\iota \cdot 2d - 2}.$$

Proving the lemma in this case.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ . Then

$$\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge ck^{2-2d} \ge cn^{2-2d}.$$

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ . Then

 $\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge ck^{2-2d} \ge cn^{2-2d}$ . With a slightly smaller c, we can remove the requirement that the distance between x and y is even.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

#### Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ . Then

 $\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge ck^{2-2d} \ge cn^{2-2d}$ . With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$x = x_0, \ldots, x_d = y$$

such that each couple  $x_i$ ,  $x_{i+1}$  differ by only one coordinate.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{n_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \geq cn^{-C}$ .

### Proof.

Assume first that x - y = (2k, 0, ..., 0),  $k \le n$ . Then  $\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge ck^{2-2d} \ge cn^{2-2d}$ . With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$x = x_0, \ldots, x_d = y$$

such that each couple  $x_i$ ,  $x_{i+1}$  differ by only one coordinate. Hence  $\mathbb{P}(x_i \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_{i+1}) > cn^{2-2d}$ .

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{n_{\tau}}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) > cn^{-C}$ .

### Proof.

Assume first that  $x - y = (2k, 0, \dots, 0), k \le n$ . Then  $\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) > ck^{2-2d} > cn^{2-2d}$ . With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$x = x_0, \ldots, x_d = y$$

such that each couple  $x_i$ ,  $x_{i+1}$  differ by only one coordinate. Hence  $\mathbb{P}(x_i \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_{i+1}) \geq cn^{2-2d}$ . Using FKG again gives

$$\mathbb{P}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge \mathbb{P}(x_0 \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_1, x_1 \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_2, \dots, x_{d-1} \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_d)$$
$$\ge \prod_{i=1}^{d} \mathbb{P}(x_{i-1} \stackrel{\Lambda_{2n}}{\longleftrightarrow} x_i) \ge \frac{c}{n^{2d^2 - 2d}}.$$

$$\frac{c}{n^{2d^2-2d}}$$
.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{2d-2d^2}$ .

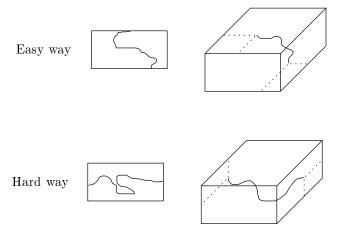
For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{2d-2d^2}$ .

This was recently improved to  $cn^{-d^2}$  by van den Berg and Don.

For any  $x, y \in \Lambda_n$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) \ge cn^{2d-2d^2}$ .

This was recently improved to  $cn^{-d^2}$  by van den Berg and Don. Their proof has an interesting topological component.

Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.



Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then

 $\mathbb{P}_{p_c}(\Lambda \ has \ an \ easy-way \ crossing) > c$ 

Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then

 $\mathbb{P}_{p_c}(\Lambda \ has \ an \ easy-way \ crossing) > c$ 

## Proof (Kesten? Bollobás-Riordan? Nolin?)

Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then

 $\mathbb{P}_{p_c}(\Lambda \ has \ an \ easy-way \ crossing) > c$ 

## Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in d = 2 so let us do this.

Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then

 $\mathbb{P}_{p_c}(\Lambda \ has \ an \ easy-way \ crossing) > c$ 

## Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle.

Let  $\Lambda$  be a box in  $\mathbb{Z}^d$ , with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then

 $\mathbb{P}_{p_c}(\Lambda \ has \ an \ easy-way \ crossing) > c$ 

## Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle. We first claim that  $p(4n,n) \leq 5p(2n,n)$ .

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

### Proof.

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a\times b$  rectangle. We first claim that  $p(4n,n)\leq 5p(2n,n)$ .

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

### Proof.

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle. We first claim that  $p(4n,n) \leq 5p(2n,n)$ . This is because if some path  $\gamma$  crosses from the top to the bottom of a  $4n \times n$  rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones.





#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

### Proof.

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle. We first claim that  $p(4n,n) \leq 5p(2n,n)$ . This is because if some path  $\gamma$  crosses from the top to the bottom of a  $4n \times n$  rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that  $p(4n,2n) \leq p(4n,n)^2$ .



#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

### Proof.

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle. We first claim that  $p(4n,n) \leq 5p(2n,n)$ . This is because if some path  $\gamma$  crosses from the top to the bottom of a  $4n \times n$  rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that  $p(4n,2n) \leq p(4n,n)^2$ . But that means that  $p(4n,2n) \leq 25p(2n,n)^2$  and inductively that  $p(2^{k+1}n,2^kn) \leq 25^{2^k-1}p(2n,n)^{2^k}$ .

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

### Proof.

It is easier to draw in d=2 so let us do this. Let p(a,b) be the probability of an easy-way crossing of an  $a \times b$  rectangle. We first claim that  $p(4n,n) \leq 5p(2n,n)$ . This is because if some path  $\gamma$  crosses from the top to the bottom of a  $4n \times n$  rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that  $p(4n,2n) \leq p(4n,n)^2$ . But that means that  $p(4n,2n) \leq 25p(2n,n)^2$  and inductively that  $p(2^{k+1}n,2^kn) \leq 25^{2^k-1}p(2n,n)^{2^k}$ . Thus, if for some n,  $p(2n,n) < \frac{1}{25}$ , then it decays exponentially, contradicting the result that  $\chi(p_c) = \infty$ .

### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

 $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$ 

for some c > 0?

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

 $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$ 

for some c > 0? This is true when d = 2.

### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some c > 0? This is true when d = 2. It is false for d > 6, in fact

 $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$ 

### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some c > 0? This is true when d = 2. It is false for d > 6, in fact

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$$

It is not known in intermediate dimensions.

#### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some c > 0? This is true when d = 2. It is false for d > 6, in fact

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$$

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing.

### Theorem

Let  $\Lambda$  be an  $2n \times \cdots \times 2n \times n$  box in  $\mathbb{Z}^d$ . Then  $\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$ 

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some c > 0? This is true when d = 2. It is false for d > 6, in fact

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$$

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing. In intermediate dimensions this is not known.

## Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$  has an easy-way crossing with probability at least c.

### Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2,n/2] \times [-n,n] \times \cdots \times [-n,n]$  has an easy-way crossing with probability at least c. "Easy-way" means from  $\{n/2\} \times [-n,n]^{d-1}$  to  $\{-n/2\} \times [-n,n]^{d-1}$  so it must cross  $0 \times [-n,n]^{d-1}$ .

#### Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$  has an easy-way crossing with probability at least c. "Easy-way" means from  $\{n/2\} \times [-n, n]^{d-1}$  to  $\{-n/2\} \times [-n, n]^{d-1}$  so it must cross  $0 \times [-n, n]^{d-1}$ . Therefore there exists some  $x \in \{0\} \times [-n, n]^{d-1}$  such that the probability that the crossing pass through it is at least  $c/n^{d-1}$ .

### Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$  has an easy-way crossing with probability at least c. "Easy-way" means from  $\{n/2\} \times [-n, n]^{d-1}$  to  $\{-n/2\} \times [-n, n]^{d-1}$  so it must cross  $0 \times [-n, n]^{d-1}$ . Therefore there exists some  $x \in \{0\} \times [-n, n]^{d-1}$  such that the probability that the crossing pass through it is at least  $c/n^{d-1}$ . But if it does, then x is connected to distance at least n/2 by two disjoint paths.

### Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$  has an easy-way crossing with probability at least c. "Easy-way" means from  $\{n/2\} \times [-n, n]^{d-1}$  to  $\{-n/2\} \times [-n, n]^{d-1}$  so it must cross  $0 \times [-n, n]^{d-1}$ . Therefore there exists some  $x \in \{0\} \times [-n, n]^{d-1}$  such that the probability that the crossing pass through it is at least  $c/n^{d-1}$ . But if it does, then x is connected to distance at least n/2 by two disjoint paths. The BK inequality finishes the proof.

#### Theorem

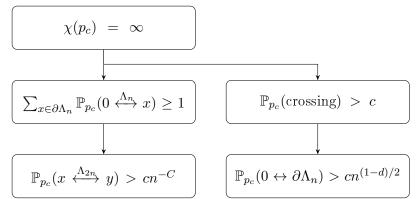
$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}.$$

### Proof.

By the previous theorem we know that the box  $[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$  has an easy-way crossing with probability at least c. "Easy-way" means from  $\{n/2\} \times [-n, n]^{d-1}$  to  $\{-n/2\} \times [-n, n]^{d-1}$  so it must cross  $0 \times [-n, n]^{d-1}$ . Therefore there exists some  $x \in \{0\} \times [-n, n]^{d-1}$  such that the probability that the crossing pass through it is at least  $c/n^{d-1}$ . But if it does, then x is connected to distance at least n/2 by two disjoint paths. The BK inequality finishes the proof.

In d=2 Kesten improved this to  $n^{-1/3}$ .

# Dependencies diagram



The

argument

Aizenman-Kesten-Newman

### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary.

### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter.

### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E-pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows.

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \notin S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e.

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \notin S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e. We choose one such e arbitrarily and define  $S_{i+1} := S_i \cup \{e\}$ .

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \notin S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e. We choose one such e arbitrarily and define  $S_{i+1} := S_i \cup \{e\}$ . If no such e exists (and this happens when  $|S_i| = B + E$ ), let  $S_{i+1} = S_i$ .

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \not\in S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e. We choose one such e arbitrarily and define  $S_{i+1} := S_i \cup \{e\}$ . If no such e exists (and this happens when  $|S_i| = B + E$ ), let  $S_{i+1} = S_i$ . Let  $X_i$  be 1 - p times the number of open edges in  $S_i$  minus p times the number of closed edges in  $S_i$ .

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

## Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \not\in S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e. We choose one such e arbitrarily and define  $S_{i+1} := S_i \cup \{e\}$ . If no such e exists (and this happens when  $|S_i| = B + E$ ), let  $S_{i+1} = S_i$ . Let  $X_i$  be 1-p times the number of open edges in  $S_i$  minus p times the number of closed edges in  $S_i$ . Then  $X_i$  is a martingale.

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

### Proof.

We define sets of edges  $\emptyset = S_0 \subset S_1 \subset \cdots$  for  $i \leq n$  as follows. Assume at step i there exists some edge  $e \notin S_i$  such that there is an open path in  $S_i$  from 0 to one of the vertices of e. We choose one such e arbitrarily and define  $S_{i+1} := S_i \cup \{e\}$ . If no such e exists (and this happens when  $|S_i| = B + E$ ), let  $S_{i+1} = S_i$ . Let  $X_i$  be 1 - p times the number of open edges in  $S_i$  minus p times the number of closed edges in  $S_i$ . Then  $X_i$  is a martingale. The lemma follows from Azuma-Hoeffding.

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions.

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

### Lemma

Let  $S \subset \Lambda$  be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in  $\Lambda$ .

#### Lemma

Let E be the number of open edges in  $\mathcal{C}(0)$  and let B be the number of closed edges in its boundary. Let  $\lambda > 0$  be some parameter. Then

$$\mathbb{P}_p(B+E \le n, |(1-p)E - pB| > \lambda \sqrt{n}) \le Ce^{-c\lambda^2}.$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

### Lemma

Let  $S \subset \Lambda$  be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in  $\Lambda$ . Let X = (1 - p)E - pB. Then

$$\mathbb{P}(|X| > \lambda n^{d/2}) < e^{-c\lambda^2}.$$

### Notation

Let A, B be subsets of  $E \subseteq \mathbb{Z}^d$ . We denote by

$$A \stackrel{E}{\Leftrightarrow} B$$

the event that there are two disjoint clusters in E which intersect both A and B.

### Notation

Let A, B be subsets of  $E \subseteq \mathbb{Z}^d$ . We denote by

$$A \stackrel{E}{\rightleftharpoons} B$$

the event that there are two disjoint clusters in E which intersect both A and B. We will use very often  $A \stackrel{E}{\rightleftharpoons} \partial E$  and in this case we omit the superscript, i.e. write  $A \rightleftharpoons \partial E$ .

Let V be the number of edges (x,y) in  $\Lambda_n$  such that

 $\{x,y\} \iff \partial \Lambda_n \text{ i.e. both } x \text{ and } y \text{ are connected to } \partial \Lambda_n \text{ but } x \stackrel{\Lambda_n}{\iff} y.$ 

Let V be the number of edges (x,y) in  $\Lambda_n$  such that

 $\{x,y\} \iff \partial \Lambda_n \text{ i.e. both } x \text{ and } y \text{ are connected to } \partial \Lambda_n \text{ but } x \stackrel{\Lambda_n}{\iff} y.$ 

Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

Let V be the number of edges (x,y) in  $\Lambda_n$  such that  $\{x,y\} \iff \partial \Lambda_n$  i.e. both x and y are connected to  $\partial \Lambda_n$  but  $x \stackrel{\Lambda_n}{\leftrightarrow} y$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ .

Let V be the number of edges (x,y) in  $\Lambda_n$  such that  $\{x,y\} \iff \partial \Lambda_n$  i.e. both x and y are connected to  $\partial \Lambda_n$  but  $x \stackrel{\Lambda_n}{\nleftrightarrow} y$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathcal{C}_1, \mathcal{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary.

Let V be the number of edges (x,y) in  $\Lambda_n$  such that  $\{x,y\} \Leftrightarrow \partial \Lambda_n$  i.e. both x and y are connected to  $\partial \Lambda_n$  but  $x \stackrel{\Lambda_n}{\leftrightarrow} y$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then

$$X\Big(\bigcup_{i}\mathscr{C}_i\Big) - \sum_{i}X(\mathscr{C}_i) = pV.$$

Let V be the number of edges (x,y) in  $\Lambda_n$  such that  $\{x,y\} \iff \partial \Lambda_n$  i.e. both x and y are connected to  $\partial \Lambda_n$  but  $x \stackrel{\Lambda_n}{\iff} y$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then

$$X\left(\bigcup_{i}\mathscr{C}_{i}\right) - \sum_{i}X(\mathscr{C}_{i}) = pV.$$

The exploration argument shows that with high probability

$$\left| X \Big( \bigcup_i \mathscr{C}_i \Big) \right| < C n^{d/2} \sqrt{\log n} \qquad |X(\mathscr{C}_i)| < C \sqrt{|\mathscr{C}_i|} \sqrt{\log n} \quad \forall i.$$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathcal{C}_1, \mathcal{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then  $X(\bigcup_i \mathcal{C}_i) - \sum_i X(\mathcal{C}_i) = pV$ . The exploration argument shows that with high probability  $|X(\bigcup_i \mathcal{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathcal{C}_i)| < C\sqrt{|\mathcal{C}_i|}\sqrt{\log n}$  for all i.

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then  $X(\bigcup_i \mathscr{C}_i) - \sum_i X(\mathscr{C}_i) = pV$ . The exploration argument shows that with high probability  $|X(\bigcup_i \mathscr{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i.

 $|X(\bigcup_i \mathscr{C}_i)| < Cn^{a/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i. By Cauchy-Schwarz,

$$\sum_{i} \sqrt{|\mathscr{C}_{i}|} \leq \sqrt{\sum_{i} |\mathscr{C}_{i}|} \sqrt{\sum_{i} 1}$$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then  $X(\bigcup_i \mathscr{C}_i) - \sum_i X(\mathscr{C}_i) = pV$ . The exploration argument shows that with high probability  $|X(\bigcup_i \mathscr{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i.

 $|X(\bigcup_i \mathscr{C}_i)| < Cn^{a/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i By Cauchy-Schwarz,

$$\sum_{i} \sqrt{|\mathcal{C}_i|} \le \sqrt{\sum_{i} |\mathcal{C}_i|} \sqrt{\sum_{i} 1} \le \sqrt{n^d}$$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

# Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then  $X(\bigcup_i \mathscr{C}_i) - \sum_i X(\mathscr{C}_i) = pV$ . The exploration argument shows that with high probability  $|X(\bigcup_i \mathscr{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i.

 $|X(\bigcup_i \mathscr{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i. By Cauchy-Schwarz,

$$\sum_i \sqrt{|\mathscr{C}_i|} \leq \sqrt{\sum_i |\mathscr{C}_i|} \sqrt{\sum_i 1} \leq \sqrt{n^d} \sqrt{n^{d-1}} = n^{d-1/2}.$$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

## Proof (Gandolfi-Grimmett-Russo).

For an  $S \subseteq \Lambda_n$  define X(S) to be 1-p times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in  $\Lambda_n$ . Let  $\mathscr{C}_1, \mathscr{C}_2, \ldots$  be all the clusters in  $\Lambda_n$  that touch the boundary. Then  $X(\bigcup_i \mathscr{C}_i) - \sum_i X(\mathscr{C}_i) = pV$ . The exploration argument shows that with high probability

 $|X(\bigcup_i \mathscr{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathscr{C}_i)| < C\sqrt{|\mathscr{C}_i|}\sqrt{\log n}$  for all i. By Cauchy-Schwarz,

$$\sum_{i} \sqrt{|\mathscr{C}_i|} \le \sqrt{\sum_{i} |\mathscr{C}_i|} \sqrt{\sum_{i} 1} \le \sqrt{n^d} \sqrt{n^{d-1}} = n^{d-1/2}.$$

"with high probability" can be made to mean "with probability  $> 1 - n^{-1/2}$ " and we are done.

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

# Corollary

 $For \ x \ a \ neighbour \ of \ \theta,$ 

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

# Corollary

For x a neighbour of  $\theta$ ,

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results.

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

### Corollary

For x a neighbour of  $\theta$ ,

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of  $\Lambda_n$  and R is the union of all clusters reaching the right side of  $\Lambda_n$  then

$$X(L \cup R) - X(L) - X(R)$$

teaches something about edges connected to both the left and the right.

#### $\operatorname{Theorem}$

Let V be the number of edges (x, y) in  $\Lambda_n$  such that  $\{x, y\} \iff \partial \Lambda_n$ . Then  $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$ .

### Corollary

For x a neighbour of  $\theta$ ,

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of  $\Lambda_n$  and R is the union of all clusters reaching the right side of  $\Lambda_n$  then

$$X(L \cup R) - X(L) - X(R)$$

teaches something about edges connected to both the left and the right. Hutchcroft has a version where one explores from random points.

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Recall from the previous slide

# Corollary

For x a neighbour of 0,  $\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) < C\sqrt{(\log n)/n}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter).

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

#### Lemma

Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

#### Lemma

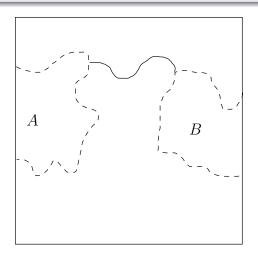
Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then

$$\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k}\backslash A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}.$$

## Lemma

Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then

$$\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d - 2d^2}.$$



$$\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$$

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

#### Lemma

Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then

$$\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d - 2d^2}.$$

### Proof.

Let  $x \in A \cap \Lambda_k$  and  $y \in B \cap \Lambda_k$ .

$$\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$$

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

### Lemma

Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then

$$\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k} \backslash A \cup B}{\longleftrightarrow} B) > ck^{2d - 2d^2}.$$

### Proof.

Let  $x \in A \cap \Lambda_k$  and  $y \in B \cap \Lambda_k$ . With probability at least  $ck^{2d-2d^2}$  there is an open path  $\gamma$  from x to y.

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Let  $k < \frac{1}{2}n$  be some number (it will be  $n^c$  eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any  $x, y \in \Lambda_k$ ,  $\mathbb{P}_{p_c}(x \stackrel{\Lambda_{2k}}{\longleftrightarrow} y) > ck^{2d-2d^2}$ . It gives

### Lemma

Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then

$$\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \backslash A \cup B}{\longleftrightarrow} B) > ck^{2d - 2d^2}.$$

### Proof.

Let  $x \in A \cap \Lambda_k$  and  $y \in B \cap \Lambda_k$ . With probability at least  $ck^{2d-2d^2}$  there is an open path  $\gamma$  from x to y. The portion of  $\gamma$  from its last vertex in A until the first vertex in B after it demonstrates the lemma.

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

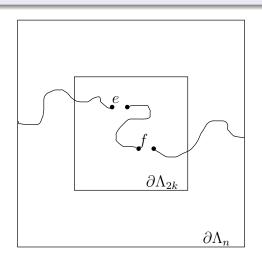
Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ .

### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ .



 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \nleftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \nleftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ . Condition on  $\mathscr{C}(x)$  and  $\mathscr{C}(y)$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n$ ,  $y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ . Condition on  $\mathscr{C}(x)$  and  $\mathscr{C}(y)$ . Use the previous lemma with  $A = \overline{\mathscr{C}(x)}$  i.e.  $\mathscr{C}(x)$  with its immediate neighbourhood and  $B = \overline{\mathscr{C}(y)}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

Lemma: Let  $A, B \subset \Lambda_{2k}$ , both intersecting  $\Lambda_k$ . Then  $\mathbb{P}_{p_c}(A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B) > ck^{2d-2d^2}$ . Denote  $P := \mathbb{P}(\Lambda_k \iff \partial \Lambda_n)$ .

### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n$ ,  $y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ . Condition on  $\mathscr{C}(x)$  and  $\mathscr{C}(y)$ . Use the previous lemma with  $A = \overline{\mathscr{C}(x)}$  i.e.  $\mathscr{C}(x)$  with its immediate neighbourhood and  $B = \overline{\mathscr{C}(y)}$ .  $A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B$  is independent of the conditioning.

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ . Condition on  $\mathscr{C}(x)$  and  $\mathscr{C}(y)$ . Use the previous lemma with  $A = \overline{\mathscr{C}(x)}$  i.e.  $\mathscr{C}(x)$  with its immediate neighbourhood and  $B = \overline{\mathscr{C}(y)}$ .  $A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B$  is independent of the conditioning.



#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof.

There exist some  $x, y \in \Lambda_k$  such that with probability  $k^{-2d}P$ ,  $x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n$  and  $x \nleftrightarrow y$ . Condition on  $\mathscr{C}(x)$  and  $\mathscr{C}(y)$ . Use the previous lemma with  $A = \overline{\mathscr{C}(x)}$  i.e.  $\mathscr{C}(x)$  with its immediate neighbourhood and  $B = \overline{\mathscr{C}(y)}$ .  $A \stackrel{\Lambda_{2k} \setminus A \cup B}{\longleftrightarrow} B$  is independent of the conditioning.

This kind of argument is called a "patching argument".

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup E_{e,f}$ ).

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \leftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup_{e,f} E_{e,f}$ ). Choose some e and f such that  $\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \nleftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup E_{e,f}$ ). Choose some e and f such that  $\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P$ . The event  $E_{e,f}^*$  that " $E_{e,f}$  would have been satisfied had e been closed, but it's open" satisfies  $\mathbb{P}(E_{e,f}^*) \approx \mathbb{P}(E_{e,f})$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

#### Lemma

Let E be the event that there exist edges  $e, f \in \Lambda_{2k}$  such that  $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$  but  $e^- \leftrightarrow e^+, f^- \leftrightarrow f^+$  and  $e^- \nleftrightarrow f^+$ . Then  $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P$ .

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup E_{e,f}$ ). Choose some e and f such that  $\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P$ . The event  $E_{e,f}^*$  that " $E_{e,f}$  would have been satisfied had e been closed, but it's open" satisfies  $\mathbb{P}(E_{e,f}^*) \approx \mathbb{P}(E_{e,f})$ . But  $E_{e,f}^*$  implies  $f \iff \partial \Lambda_n$ , which has probability  $\leq C\sqrt{(\log n)/n}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup E_{e,f}$ ). Choose some e and f such that  $\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P$ . The event  $E_{e,f}^*$  that " $E_{e,f}$  would have been satisfied had e been closed, but it's open" satisfies  $\mathbb{P}(E_{e,f}^*) \approx \mathbb{P}(E_{e,f})$ . But  $E_{e,f}^*$  implies  $f \iff \partial \Lambda_n$ , which has probability  $\leq C\sqrt{(\log n)/n}$ . All in all we get

$$C\sqrt{\frac{\log n}{n}} \ge \mathbb{P}(E_{e,f}^*) \ge c\mathbb{P}(E_{e,f}) \ge ck^{-2d^2 - 2d}P.$$

 $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$ 

### Proof of the theorem.

For given edges e and f denote by  $E_{e,f}$  the event as in the lemma (so  $E = \bigcup E_{e,f}$ ). Choose some e and f such that  $\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P$ . The event  $E_{e,f}^*$  that " $E_{e,f}$  would have been satisfied had e been closed, but it's open" satisfies  $\mathbb{P}(E_{e,f}^*) \approx \mathbb{P}(E_{e,f})$ . But  $E_{e,f}^*$  implies  $f \iff \partial \Lambda_n$ , which has probability  $\leq C\sqrt{(\log n)/n}$ . All in all we get

$$C\sqrt{\frac{\log n}{n}} \ge \mathbb{P}(E_{e,f}^*) \ge c\mathbb{P}(E_{e,f}) \ge ck^{-2d^2 - 2d}P.$$

Choosing  $k = n^{1/(8d^2 + 8d)}$  proves the theorem.

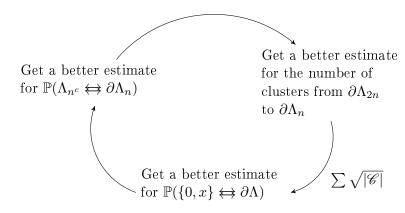
 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \Longleftrightarrow \partial \Lambda_n) \leq C n^{-1/4}.$ 

$$\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \Longleftrightarrow \partial \Lambda_n) \le C n^{-1/4}.$$

 $\bullet$  The theorem actually holds for all p.

$$\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$$

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents.



$$\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$$

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents. Unfortunately, the end result was

$$\mathbb{P}(\{0,x\} \Longleftrightarrow \partial \Lambda_n) \leq n^{-\frac{2d^2+3d-3}{4d^2+5d-5}+o(1)}$$

which is not a big improvement over  $\frac{1}{2}$ , say in d=3 it gives  $\frac{12}{23}$ .

$$\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$$

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents. Unfortunately, the end result was

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) \le n^{-\frac{2d^2 + 3d - 3}{4d^2 + 5d - 5} + o(1)}$$

which is not a big improvement over  $\frac{1}{2}$ , say in d=3 it gives  $\frac{12}{23}$ .

### Definition

Let  $\eta$  be some positive number smaller than  $\frac{1}{8d^2+8d}$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \Longleftrightarrow \partial \Lambda_n) \le C n^{-1/4}.$ 

### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ .

$$\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$$

### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ . Then

$$\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c.$$

 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$ 

#### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ . Then

$$\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c.$$

### Proof.

Denote the event by E. Assume both E and its translation by  $(n/2, 0, \ldots, 0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E').

 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$ 

#### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ . Then

$$\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c.$$

### Proof.

Denote the event by E. Assume both E and its translation by  $(n/2,0,\ldots,0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr{C}$  and  $\mathscr{C}'$ .

 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$ 

#### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ . Then

$$\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c.$$

#### Proof.

Denote the event by E. Assume both E and its translation by  $(n/2,0,\ldots,0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr E'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr E$  and  $\mathscr E'$ . If  $\mathscr E \neq \mathscr E'$  then each of these cubes satisfies the two disjoint clusters event.

 $\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \le Cn^{-1/4}.$ 

#### Lemma

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^\eta$  in  $\Lambda_n$ . Then

$$\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c.$$

### Proof.

Denote the event by E. Assume both E and its translation by  $(n/2,0,\ldots,0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr C'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr C$  and  $\mathscr C'$ . If  $\mathscr C \neq \mathscr C'$  then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality

$$\mathbb{P}_{p_c}(E \cap E' \cap \{\mathscr{C} \neq \mathscr{C}'\}) \le Cn^{-1/4}.$$

Call a cluster  $\mathscr{C}$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$ .

## Proof.

Denote the event by E. Assume both E and its translation by  $(n/2,0,\ldots,0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr{C}$  and  $\mathscr{C}'$ . If  $\mathscr{C} \neq \mathscr{C}'$  then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality  $\mathbb{P}_{n_c}(E \cap E' \cap \{\mathscr{C} \neq \mathscr{C}'\}) \leq Cn^{-1/4}$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$ .

### Proof.

Denote the event by E. Assume both E and its translation by (n/2, 0, ..., 0) occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr{C}$  and  $\mathscr{C}'$ . If  $\mathscr{C} \neq \mathscr{C}'$  then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality  $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathscr{C} \neq \mathscr{C}'\}) \leq Cn^{-1/4}$ . Hence

$$\mathbb{P}_{p_c}(\mathscr{C} = \mathscr{C}') \ge 1 - 2c_1 - Cn^{-1/4}.$$

Call a cluster  $\mathscr{C}$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$ .

### Proof.

Denote the event by E. Assume both E and its translation by (n/2, 0, ..., 0) occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr{C}$  and  $\mathscr{C}'$ . If  $\mathscr{C} \neq \mathscr{C}'$  then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality  $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathscr{C} \neq \mathscr{C}'\}) \leq Cn^{-1/4}$ . Hence

$$\mathbb{P}_{p_c}(\mathscr{C} = \mathscr{C}') \ge 1 - 2c_1 - Cn^{-1/4}.$$

By continuity, the same inequality will hold for a slightly smaller p.

Call a cluster  $\mathscr C$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb P_{p_c}(\exists \ large \ cluster) \leq 1 - c_1$ .

### Proof.

Denote the event by E. Assume both E and its translation by  $(n/2,0,\ldots,0)$  occurred (call the translates  $\Lambda'$ ,  $\mathscr{C}'$  and E'). Then there at least  $\frac{1}{4}$  of the  $n^{\eta}$  cubes in  $\Lambda \cap \Lambda'$  intersect both  $\mathscr{C}$  and  $\mathscr{C}'$ . If  $\mathscr{C} \neq \mathscr{C}'$  then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality  $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathscr{C} \neq \mathscr{C}'\}) \leq Cn^{-1/4}$ . Hence

$$\mathbb{P}_{p_c}(\mathscr{C} = \mathscr{C}') \ge 1 - 2c_1 - Cn^{-1/4}.$$

By continuity, the same inequality will hold for a slightly smaller p. By a theorem of Liggett, Schonmann and Stacey (1997), if  $c_1$  is sufficiently small and n sufficiently large, then an infinite cluster exists, contradicting  $p < p_c$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c$ .

The same argument works for clusters  $\Lambda_{2n}$  (or any constant), i.e. we define the cluster by connections in  $\Lambda_{2n}$  but still ask only about intersections with subcubes of  $\Lambda_n$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_n$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \ large \ cluster) \leq 1 - c$ .

The same argument works for clusters  $\Lambda_{2n}$  (or any constant), i.e. we define the cluster by connections in  $\Lambda_{2n}$  but still ask only about intersections with subcubes of  $\Lambda_n$ . The proof is the same, only the "distance of independence" in Liggett-Schonmann-Stacey needs to be increased.

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

The same argument works for clusters  $\Lambda_{2n}$  (or any constant), i.e. we define the cluster by connections in  $\Lambda_{2n}$  but still ask only about intersections with subcubes of  $\Lambda_n$ . The proof is the same, only the "distance of independence" in Liggett-Schonmann-Stacey needs to be increased.

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Examine one  $\nu$  (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than  $1 - Cn^{-d}$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Examine one  $\nu$  (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than  $1 - Cn^{-d}$ . Then, with probability  $> 1 - n^{-d\nu}$ , each box  $a + \Lambda_{n\nu}$ ,  $a \in \Lambda_n$  is connected to  $a + \partial \Lambda_n$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Examine one  $\nu$  (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than  $1 - Cn^{-d}$ . Then, with probability  $> 1 - n^{-d\nu}$ , each box  $a + \Lambda_{n^{\nu}}$ ,  $a \in \Lambda_n$  is connected to  $a + \partial \Lambda_n$ . Denote this event by A.

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Examine one  $\nu$  (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than  $1-Cn^{-d}$ . Then, with probability  $>1-n^{-d\nu}$ , each box  $a+\Lambda_{n^{\nu}}$ ,  $a\in\Lambda_n$  is connected to  $a+\partial\Lambda_n$ . Denote this event by A. In particular, all boxes in  $\Lambda_{n/4}$  are connected to  $\partial\Lambda_{n/2}$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Examine one  $\nu$  (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than  $1-Cn^{-d}$ . Then, with probability  $>1-n^{-d\nu}$ , each box  $a+\Lambda_{n^{\nu}},\,a\in\Lambda_n$  is connected to  $a+\partial\Lambda_n$ . Denote this event by A. In particular, all boxes in  $\Lambda_{n/4}$  are connected to  $\partial\Lambda_{n/2}$ . During this proof, whenever we say "cluster" we mean a cluster in  $\Lambda_n$  that intersects  $\Lambda_{n/4}$  and  $\partial\Lambda_{n/2}$ 

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

## Proof.

 $A \implies \{\text{all } n^{\nu} \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2} \}.$ 

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

## Proof.

 $A \Longrightarrow \{\text{all } n^{\nu} \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2} \}.$  For every cluster  $\mathscr C$  let  $N(\mathscr C)$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr C$ .

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

## Proof.

 $A \Longrightarrow \{ \text{all } n^{\nu} \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2} \}.$  For every cluster  $\mathscr C$  let  $N(\mathscr C)$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr C$ . Under A we have,

$$n^{(1-\nu)d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C})$$

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

 $A \Longrightarrow \{\text{all } n^{\nu} \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2} \}$ . For every cluster  $\mathscr C$  let  $N(\mathscr C)$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr C$ . Under A we have, by concavity

$$n^{(1-\nu)d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C}) \leq \left(\sum_{\mathscr{C}} N(\mathscr{C})^{(d-1)/d}\right)^{d/(d-1)}.$$

Call a cluster  $\mathscr{C}$  in  $\Lambda_{2n}$  "large" if it intersects  $\frac{7}{8}$  of the cubes of side-length  $n^{\eta}$  in  $\Lambda_n$ . Then  $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$ .

# Theorem (Duminil-Copin-K-Tassion, unpublished)

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

 $A \Longrightarrow \{\text{all } n^{\nu} \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2} \}.$  For every cluster  $\mathscr C$  let  $N(\mathscr C)$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr C$ . Under A we have, by concavity

$$n^{(1-\nu)d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C}) \leq \left(\sum_{\mathscr{C}} N(\mathscr{C})^{(d-1)/d}\right)^{d/(d-1)}.$$

By the lemma,

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \ge c n^{(1-\nu)(d-1)}.$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ .

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ . Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \Longleftrightarrow \partial \Lambda_{n/4}) \le C n^{-d/2} + C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{L}} \sqrt{|\mathscr{C}|}.$$

where the sum is over clusters in  $\Lambda_{n/2}$ .

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### $\overline{\text{Proof.}}$

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ . Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2} + C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|}.$$

where the sum is over clusters in  $\Lambda_{n/2}$ . A variation on the argument, also due to Cerf, shows that one can take the sum only over  $\mathscr{C}$  in  $\Lambda_n$  that intersect  $\Lambda_{n/4}$  and  $\partial \Lambda_{n/2}$ .

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ . Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2} + C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|}.$$

where the sum is over clusters in  $\Lambda_{n/2}$ . A variation on the argument, also due to Cerf, shows that one can take the sum only over  $\mathscr{C}$  in  $\Lambda_n$  that intersect  $\Lambda_{n/4}$  and  $\partial \Lambda_{n/2}$ . And with Cerf's lemma,

$$\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \le Cn^{C\nu} \mathbb{P}(0 \iff \partial \Lambda_{n/4})$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ . Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2} + C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|}.$$

where the sum is over clusters in  $\Lambda_{n/2}$ . A variation on the argument, also due to Cerf, shows that one can take the sum only over  $\mathscr{C}$  in  $\Lambda_n$  that intersect  $\Lambda_{n/4}$  and  $\partial \Lambda_{n/2}$ . And with Cerf's lemma,

$$\begin{split} \mathbb{P}(\Lambda_{2n^{\nu}} & \Longleftrightarrow \partial \Lambda_{n/4}) \leq Cn^{C\nu} \mathbb{P}(0 \Longleftrightarrow \partial \Lambda_{n/4}) \\ & \leq Cn^{-d/2 + C\nu} + Cn^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{split}$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

$$\mathcal{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \ge c n^{(1-\nu)(d-1)}.$$

$$\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \le C n^{-d/2 + C\nu} + C n^{-d+C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}.$$

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{L} \mathbb{R} \sum_{n} N(\mathscr{L})(d-1)/d > c_n(1-\nu)(d-1)$ 

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C} \mathbb{F} \sum_{\alpha} N(\mathscr{C})^{(d-1)/d} > cn^{(1-\nu)(d-1)}$ 

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### $\overline{P}$ roof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

 $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ .  $\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$ . The isoperimetric inequality in  $\mathbb{Z}^d$  shows that for every small  $\mathscr{C}$  we have at least  $cN(\mathscr{C})^{(d-1)/d}$  subboxes of  $\Lambda_{n/2}$  which intersect  $\mathscr{C}$ but have a neighbouring box that does not intersect  $\mathscr{C}$ . Let Q be such a box and let Q' be its neighbour that does not interset  $\mathscr{C}$ . Under the event A (which, recall, said that every  $n^{\nu}$  subbox of  $\Lambda_{n/2}$  is connected to distance n), this implies that  $Q \cup Q'$  is connected to distance n/4 by two disjoint clusters.

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ .  $\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$ . The isoperimetric inequality in  $\mathbb{Z}^d$  shows that for every small  $\mathscr{C}$  we have at least  $cN(\mathscr{C})^{(d-1)/d}$  subboxes of  $\Lambda_{n/2}$  which intersect  $\mathscr{C}$ but have a neighbouring box that does not intersect  $\mathscr{C}$ . Let Q be such a box and let Q' be its neighbour that does not interset  $\mathscr{C}$ . Under the event A (which, recall, said that every  $n^{\nu}$  subbox of  $\Lambda_{n/2}$  is connected to distance n), this implies that  $Q \cup Q'$  is connected to distance n/4 by two disjoint clusters. Thus, under A, there are  $c \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}$  boxes of size  $2n^{\nu}$  in  $\Lambda_{n/2}$ which are connected to distance n/4 by two disjoint clusters.

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

$$\begin{array}{l} \mathscr{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}. \\ \mathbb{P}(\Lambda_{2n^{\nu}} \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{array}$$

Thus, under A, there are  $c \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}$  boxes of size  $2n^{\nu}$  in  $\Lambda_{n/2}$  which are connected to distance n/4 by two disjoint clusters.

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C} \mathbb{F} \sum_{\alpha} N(\mathscr{C})^{(d-1)/d} > cn^{(1-\nu)(d-1)}$ 

$$\begin{array}{l} \mathscr{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}. \\ \mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{array}$$

Thus, under A, there are  $c \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}$  boxes of size  $2n^{\nu}$  in  $\Lambda_{n/2}$  which are connected to distance n/4 by two disjoint clusters. There is some over-counting in this argument, every  $2n^{\nu}$  box might be counted for every cluster that intersects it.

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C}} N(\mathscr{C})^{(d-1)/d} > cn^{(1-\nu)(d-1)}$ .

$$\begin{array}{l} \mathscr{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}. \\ \mathbb{P}(\Lambda_{2n^{\nu}} \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{array}$$

Thus, under A, there are  $c \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}$  boxes of size  $2n^{\nu}$  in  $\Lambda_{n/2}$  which are connected to distance n/4 by two disjoint clusters. There is some over-counting in this argument, every  $2n^{\nu}$  box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box,  $Cn^{d\nu}$ 

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C}} N(\mathscr{C})^{(d-1)/d} > cn^{(1-\nu)(d-1)}$ .

$$\begin{array}{l} \mathscr{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}. \\ \mathbb{P}(\Lambda_{2n^{\nu}} \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{array}$$

Thus, under A, there are  $c \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}$  boxes of size  $2n^{\nu}$  in  $\Lambda_{n/2}$  which are connected to distance n/4 by two disjoint clusters. There is some over-counting in this argument, every  $2n^{\nu}$  box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box,  $Cn^{d\nu}$ . Overall we get, under A,

$$\#\{\text{such boxes}\} \ge cn^{-d\nu} \sum_{\mathscr{C}} N(\mathscr{C})^{(d-1)/d}.$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

$$\begin{array}{l} \mathscr{C}. \ \mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}. \\ \mathbb{P}(\Lambda_{2n^{\nu}} \Longleftrightarrow \partial \Lambda_{n/4}) \leq C n^{-d/2+C\nu} + C n^{-d+C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}. \end{array}$$

Under A,

$$\#\{\text{such boxes}\} \ge cn^{-d\nu} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

 $\begin{array}{l} \mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)} \\ \mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \leq C n^{-d/2+C\nu} + C n^{-d+C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})} . \\ \text{Under } A, \end{array}$ 

$$\#\{\text{such boxes}\} \ge cn^{-d\nu} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

Taking expectations gives

$$Cn^{(1-\nu)d}\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial\Lambda_{n/4}) \ge cn^{-d\nu}\mathbb{E}\sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect

 $\begin{array}{l} \mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)} \cdot \\ \mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial \Lambda_{n/4}) \leq C n^{-d/2 + C\nu} + C n^{-d + C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})} \cdot \\ \text{Under } A, \end{array}$ 

$$\#\{\text{such boxes}\} \ge cn^{-d\nu} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

Taking expectations gives

$$Cn^{(1-\nu)d}\mathbb{P}(\Lambda_{2n^{\nu}} \iff \partial\Lambda_{n/4}) \ge cn^{-d\nu}\mathbb{E}\sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

Together these give

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \sum_{\mathscr{C}} \mathbb{E} \sqrt{N(\mathscr{C})}.$$

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}.$$

$$\mathbb{E}\sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \le Cn^{d/2 + C\nu} + Cn^{C\nu} \mathbb{E}\sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$$

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}.$$

We may add the requirement " $\mathscr C$  small" on the right hand side, as the possible large clusters can only add a factor of  $Cn^{d/2+C\nu}$ .

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})}.$$

We may add the requirement " $\mathscr{C}$  small" on the right hand side, as the possible large clusters can only add a factor of  $Cn^{d/2+C\nu}$ .

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})}.$$

We may add the requirement " $\mathscr C$  small" on the right hand side, as the possible large clusters can only add a factor of  $Cn^{d/2+C\nu}$ . Since our clusters all touch both  $\Lambda_{n/4}$  and  $\partial\Lambda_{n/2}$  we must have  $N(\mathscr C)>cn^{1-\nu}$  for all  $\mathscr C$ .

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \leq C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})}.$$

We may add the requirement " $\mathscr C$  small" on the right hand side, as the possible large clusters can only add a factor of  $Cn^{d/2+C\nu}$ . Since our clusters all touch both  $\Lambda_{n/4}$  and  $\partial\Lambda_{n/2}$  we must have  $N(\mathscr C)>cn^{1-\nu}$  for all  $\mathscr C$ . Thus

$$\sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})} \leq C n^{-(1-\nu)(d-2)/d} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### Proof.

Let  $N(\mathscr{C})$  be the number of  $n^{\nu}$ -subboxes of  $\Lambda_{n/2}$  that intersect  $\mathscr{C}$ .  $\mathbb{E} \sum_{\mathscr{C} \text{ small }} N(\mathscr{C})^{(d-1)/d} \geq c n^{(1-\nu)(d-1)}$ 

$$\mathbb{E} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d} \le C n^{d/2 + C\nu} + C n^{C\nu} \mathbb{E} \sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})}.$$

We may add the requirement " $\mathscr C$  small" on the right hand side, as the possible large clusters can only add a factor of  $Cn^{d/2+C\nu}$ . Since our clusters all touch both  $\Lambda_{n/4}$  and  $\partial\Lambda_{n/2}$  we must have  $N(\mathscr C)>cn^{1-\nu}$  for all  $\mathscr C$ . Thus

$$\sum_{\mathscr{C} \text{ small}} \sqrt{N(\mathscr{C})} \leq C n^{-(1-\nu)(d-2)/d} \sum_{\mathscr{C} \text{ small}} N(\mathscr{C})^{(d-1)/d}.$$

For  $\nu$  sufficiently small, we reach a contradiction.

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

### The proof in a nutshell

The Aizenman-Kesten-Newman-Cerf argument gives

$$\mathbb{P}(\Lambda_{n^{\nu}} \iff \Lambda_n) \leq \text{uninteresting terms } n^{-d} \sum \sqrt{|\mathscr{C}|}.$$

The contradictory assumption, the isoperimetric inequality and the fact that there are no large clusters give

$$\mathbb{P}(\Lambda_{n^{\nu}} \iff \Lambda_n) \ge \text{uninteresting terms } n^{-d} \sum |\mathscr{C}|^{(d-1)/d}.$$

And these two contradict.

For  $d \geq 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

• Going through the calculation gives

$$\nu<\frac{d-2}{d^3+4d^2+d-2}$$

so, say, 1/64 at d = 3.

For  $d \ge 3$  and some  $\nu = \nu(d) > 0$ ,  $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$ .

• Going through the calculation gives

$$\nu<\frac{d-2}{d^3+4d^2+d-2}$$

so, say, 1/64 at d = 3.

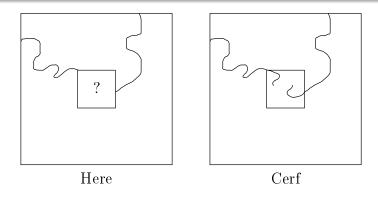
• The theorem holds also at d = 2 (known since the 80s, with a different proof).

# Dependencies diagram II $\chi(p_c) = \infty$ $\sum_{x \in \partial \Lambda_n} \mathbb{P}_{p_c}(0 \stackrel{\Lambda_n}{\longleftrightarrow} x) \ge 1$ $\mathbb{P}_{p_c}(\text{crossing}) > c$ $\mathbb{P}_{p_c}(0 \leftrightarrow \partial \Lambda_n) > cn^{(1-d)/2}$ $\mathbb{P}_{n_{-}}(x \stackrel{\Lambda_{2n}}{\longleftrightarrow} y) > cn^{-C}$ $\mathbb{P}_{p_c}(\Lambda_{n^c} \iff \Lambda_n) > cn^{-1/4}$

$$\begin{array}{c}
\downarrow \\
\mathbb{P}_{p_c}(\exists \text{ large cluster}) < 1 - c
\end{array}
\longrightarrow
\begin{array}{c}
\downarrow \\
\mathbb{P}_{p_c}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) > Cn^{-d}
\end{array}$$

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \stackrel{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .



For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \stackrel{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

### Proof.

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ .

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \stackrel{\Lambda_n \backslash \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

### Proof.

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ .

### $\operatorname{Theorem}$

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

### Proof.

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n\gamma} \leftrightarrow \partial \Lambda_{n\eta}) > cn^{-1/8}$ . Denote

 $P = \mathbb{P}(\Lambda_{n\gamma} \xrightarrow{\Lambda_n \setminus \Lambda_{n\gamma}} \partial \Lambda_n)$  (i.e. we need to show that P is small).

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$  (i.e. we need to show that P is small).

### Lemma

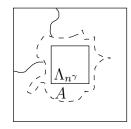
For any  $A \supseteq \Lambda_{n^{\gamma}}$ ,  $\mathbb{P}(A \iff \partial \Lambda_n) \ge P$ .

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \stackrel{\Lambda_n \backslash \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$  (i.e. we need to show that P is small).

### Lemma

For any  $A \supseteq \Lambda_{n^{\gamma}}$ ,  $\mathbb{P}(A \overset{\Lambda_n \setminus A}{\longleftrightarrow} \partial \Lambda_n) \ge P$ .



For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$  (i.e. we need to show that P is small).

### Lemma

For any  $A \supseteq \Lambda_{n^{\gamma}}$ ,  $\mathbb{P}(A \overset{\Lambda_n \setminus A}{\iff} \partial \Lambda_n) \ge P$ .

Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ .

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$  (i.e. we need to show that P is small).

### Lemma

For any  $A \supseteq \Lambda_{n^{\gamma}}$ ,  $\mathbb{P}(A \stackrel{\Lambda_n \setminus A}{\longleftrightarrow} \partial \Lambda_n) \ge P$ .

Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Outside A, the conditioning has no effect.

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$  (i.e. we need to show that P is small).

### Lemma

For any  $A \supseteq \Lambda_{n^{\gamma}}$ ,  $\mathbb{P}(A \stackrel{\Lambda_n \setminus A}{\longleftrightarrow} \partial \Lambda_n) \ge P$ .

Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathcal{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Outside A, the conditioning has no effect. Use the lemma and get

$$\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \overset{\Lambda_n \setminus A}{\longleftrightarrow} \partial \Lambda_n) \ge P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}})).$$

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_{n}) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n})$ . Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Then  $\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \iff \partial \Lambda_{n}) \geq P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}))$ .

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$ . Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Then

 $\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \xleftarrow{\Lambda_n \setminus A} \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}))$ . Sum over all such B and get

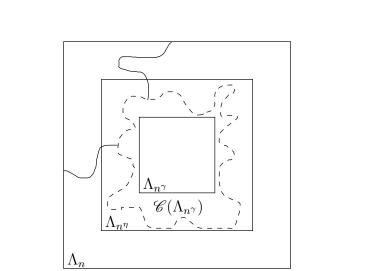
$$\mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}(\Lambda_{n^{\gamma}})} \overset{\Lambda_{n} \setminus \mathscr{C}(\Lambda_{n^{\gamma}})}{\longleftrightarrow} \partial \Lambda_{n}) \geq P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}})$$

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq C n^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$ . Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Then

 $\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \xleftarrow{\Lambda_n \setminus A} \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}))$ . Sum over all such B and get

 $\mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}(\Lambda_{n^{\gamma}})} \overset{\Lambda_{n} \setminus \mathscr{C}(\Lambda_{n^{\gamma}})}{\Longleftrightarrow} \partial \Lambda_{n}) \geq P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}})$ But the left-hand side implies  $\Lambda_{n^{\eta}} \Leftrightarrow \partial \Lambda_{n}$ .



### $\operatorname{Theorem}$

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$ . Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Then  $\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \iff \partial \Lambda_n) > P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}))$ . Sum over

 $\mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}(\Lambda_{n^{\gamma}})} \overset{\Lambda_{n} \setminus \mathscr{C}(\Lambda_{n^{\gamma}})}{\longleftrightarrow} \partial \Lambda_{n}) \geq P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}})$ But the left-hand side implies  $\Lambda_{n^{\eta}} \iff \partial \Lambda_{n}$ . So we get

 $Cn^{-1/4} \ge \mathbb{P}(\Lambda_{n^{\eta}} \iff \partial \Lambda_n) \ge P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}) > cP \cdot n^{-1/8}$ 

For  $d \geq 3$ ,  $\mathbb{P}(\Lambda_{n^c} \overset{\Lambda_n \setminus \Lambda_{n^c}}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$ .

Let  $\eta$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\eta}} \iff \Lambda_n) \leq Cn^{-1/4}$ . Let  $\gamma$  be sufficiently small so that  $\mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_{n^{\eta}}) > cn^{-1/8}$ . Denote  $P = \mathbb{P}(\Lambda_{n^{\gamma}} \iff \partial \Lambda_n)$ . Let  $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$  and condition on  $B = \mathscr{C}(\Lambda_{n^{\gamma}})$ . Let  $A = \overline{B}$ . Then

 $\mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}), A \xleftarrow{\Lambda_n \setminus A} \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathscr{C}(\Lambda_{n^{\gamma}}))$ . Sum over all such B and get

 $\mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}(\Lambda_{n^{\gamma}})} \overset{\Lambda_{n} \setminus \mathscr{C}(\Lambda_{n^{\gamma}})}{\longleftrightarrow} \partial \Lambda_{n}) \geq P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}})$ But the left-hand side implies  $\Lambda_{n^{\eta}} \iff \partial \Lambda_{n}$ . So we get

$$Cn^{-1/4} \ge \mathbb{P}(\Lambda_{n^{\eta}} \iff \partial \Lambda_n) \ge P \cdot \mathbb{P}(\Lambda_{n^{\gamma}} \nleftrightarrow \partial \Lambda_{n^{\eta}}) > cP \cdot n^{-1/8}$$
  
or  $P < Cn^{-1/8}$ .

For  $p < p_c$  there is a number, denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p) + o(1))n}.$$

For  $p < p_c$  there is a number, denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p) + o(1))n}.$$

For  $p > p_c$  there is a number, also denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n, 0 \leftrightarrow \infty) = e^{-(\xi(p) + o(1))n}.$$

The notation  $A \leftrightarrow \infty$  means  $|\mathscr{C}(A)| = \infty$ .

For  $p < p_c$  there is a number, denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p) + o(1))n}.$$

For  $p > p_c$  there is a number, also denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n, 0 \leftrightarrow \infty) = e^{-(\xi(p) + o(1))n}.$$

The notation  $A \leftrightarrow \infty$  means  $|\mathscr{C}(A)| = \infty$ .

### Theorem (Duminil-Copin-K-Tassion)

$$\xi(p) \le e^{|p-p_c|^{-2}}.$$

For  $p < p_c$  there is a number, denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p) + o(1))n}.$$

For  $p > p_c$  there is a number, also denoted by  $\xi(p)$ , such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n, 0 \leftrightarrow \infty) = e^{-(\xi(p) + o(1))n}.$$

The notation  $A \leftrightarrow \infty$  means  $|\mathscr{C}(A)| = \infty$ .

#### Theorem (Duminil-Copin-K-Tassion)

$$\xi(p) \le e^{|p-p_c|^{-2}}.$$

We will only show a lemma from proof, to demonstrate yet another use of Cerf's theorem.

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ 

The notation  $A \leftrightarrow \infty$  means  $|\mathscr{C}(A)| = \infty$ .

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

The notation  $A \leftrightarrow \infty$  means  $|\mathscr{C}(A)| = \infty$ .

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ .

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \ge 1 - \frac{\varepsilon}{3m}.$$

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \ge 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \iff \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \ge 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \iff \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

Define n = 2Km.

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \ge 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \iff \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

Define n = 2Km. We are now given an  $A \subseteq \Lambda_n$ .

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that

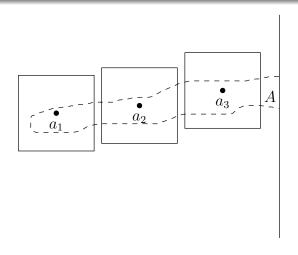
$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \ge 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \iff \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

Define n = 2Km. We are now given an  $A \subseteq \Lambda_n$ . Find m elements  $a_1, \ldots, a_m \in A$  such that the translates  $a_i + \Lambda_K$  are disjoint.

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .



If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that  $\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}$ . Let K be so large that  $\mathbb{P}(\Lambda_k \iff \partial \Lambda_K) < \frac{\varepsilon}{3m}$ . Define n = 2Km. We are now given an  $A \subseteq \Lambda_n$ . Find m elements  $a_1, \ldots, a_m \in A$  such that the translates  $a_i + \Lambda_K$  are disjoint. For each  $a_i$ ,  $\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta$ .

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that  $\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}$ . Let K be so large that  $\mathbb{P}(\Lambda_k \Longleftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}$ . Define n = 2Km. We are now given an  $A \subseteq \Lambda_n$ . Find m elements  $a_1, \ldots, a_m \in A$  such that the translates  $a_i + \Lambda_K$  are disjoint. For each  $a_i$ ,  $\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta$ . Since the boxes are disjoint these are independent and we have

$$\mathbb{P}(\exists i : a_i \leftrightarrow a_i + \partial \Lambda_K) \ge 1 - (1 - \theta)^m > 1 - \frac{\varepsilon}{3}.$$

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .

#### Proof.

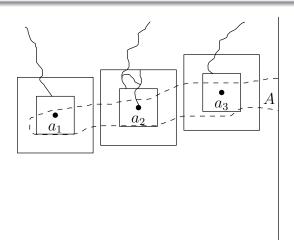
Let m be such that  $(1-\theta)^m < \frac{1}{3}\varepsilon$ . Let k be so large such that  $\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}$ . Let K be so large that  $\mathbb{P}(\Lambda_k \Longleftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}$ . Define n = 2Km. We are now given an  $A \subseteq \Lambda_n$ . Find m elements  $a_1, \ldots, a_m \in A$  such that the translates  $a_i + \Lambda_K$  are disjoint. For each  $a_i$ ,  $\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta$ . Since the boxes are disjoint these are independent and we have

$$\mathbb{P}(\exists i: a_i \leftrightarrow a_i + \partial \Lambda_K) \ge 1 - (1 - \theta)^m > 1 - \frac{\varepsilon}{3}.$$

On the other hand

$$\mathbb{P}(\forall i: a_i + \Lambda_k \leftrightarrow \infty, a_i + \Lambda_k \not\iff a_i + \Lambda_K) > 1 - \frac{2\varepsilon}{3}.$$

If  $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$  then for every  $\varepsilon > 0$  there exists an n such that for any set  $A \subseteq \Lambda_n$  intersecting both  $\{0\}$  and  $\partial \Lambda_n$  we have  $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$ .





# Thanks for your attention!