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@ Lecture 1: Definition and basic properties of SLE, examples
@ Lecture 2: Basic properties of SLE

o Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler

Lectures on Schramm-Loewner evolution by Berestycki and Norris
Imaginary geometry | by Miller and Sheffield
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Simple random walk
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Simple random walk

I

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 3/39



Simple random walk

Donsker’s theorem: Simple random walk converges to Brownian motion.
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Loop-erased random walk (LERW)
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Loop-erased random walk (LERW)

o Lawler-Schramm-Werner'04: Loop-erased random walk = SLE.

Illustration by P. Nolin
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Critical percolation on the triangular lattice

Smirnov’01: Critical percolation on the triangular lattice = SLEg
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Critical percolation on the triangular lattice

Smirnov’01: Critical percolation on the triangular lattice = SLEg
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Uniform spanning tree

72 restricted to a box
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Uniform spanning tree (

Uniform spanning tree (UST)
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Uniform spanning tree (UST)
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Peano curve

Lawler-Schramm-Werner'04: Peano curve of the UST = SLEg
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Conformal maps

bcC Dcc

Definition (Conformal map)

f is conformal if f is bijective and f’ exists.

f(z) = f1(21722) + "f2(21722), z=z14+izn

Lemma (Cauchy-Riemann equations)

If f is conformal then

O fi = Oafr, Ohfi = —01ho.
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Conformal invariance of planar Brownian motion

Theorem

@ Let W be a planar Brownian motion started from 0.
o Define Tp :=inf{t >0 : W(t) € D} for D C C a domain s.t. 0 € D.
o Let f: D — D be a conformal map fixing the origin.
o Then W :=fo W/|o,5] has the law of a planar Brownian motion run

until first leaving D, modulo time reparametrization.?

“We identify wi : h — C and wy : b — C (with h, b C R intervals) if there
is an increasing bijection ¢ : i — bk such that wy = ws 0 ¢.

W (rp) W=foW
- f S
c} —> @v
DcC DccC
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Conformal invariance of planar Brownian motion
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Conformal invariance of Brownian motion: proof sketch

W(rp)

W=7foW

W:=fo Wiio,5] has the law of a planar Brownian motion run until first

leaving D, modulo time reparametrization.

Write W(t) = Wi(t) + iWh(t).
Exercise: Show that It6's formula and the Cauchy-Riemann equations give

° % Wg are local martingales.
o (W), = (Wh); and this function is a.s. strictly increasing in t.

o (Wi, W,) =0.
These properties characterize a planar Brownian motion modulo time

change (see e.g. Revuz-Yor).
August 4, 2020 10 /39
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Riemann mapping theorem

DccC

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of C then there
exists a conformal map f : D — .

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 11/39



Riemann mapping theorem

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of C then there
exists a conformal map f : D — .

Three degrees of freedom.
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Mapping out function

e 7 :[0,00) — H curve in H from 0 to co.

n
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Mapping out function

e 7 :[0,00) — H curve in H from 0 to co.
e Ky =H\ {unbounded component of H \ n([0, t])}.

n(t) n(t) K,
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Mapping out function

e 7 :[0,00) — H curve in H from 0 to co.
e Ky =H\ {unbounded component of H \ n([0, t])}.
o gt :H\Kt%H, gt(oo) = OQ.
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Mapping out function

e 7 :[0,00) — H curve in H from 0 to co.
e Ky =H\ {unbounded component of H \ n([0, t])}.
o gt :H\Kt%H, gt(oo) — OQ.
o gi(z)=aiz+ag+a_1z7 1 +... for a,ap, - € R near z = o0
o Show gi(z) :== —1/gi(—z71) = 31z + 322> + ... by Schwarz reflection.

gt

Mot

0 9:(n(t))
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Mapping out function

e 7 :[0,00) — H curve in H from 0 to co.
e Ky =H\ {unbounded component of H \ n([0, t])}.
o gt :H\Kt%H, gt(oo) — OQ.
o gi(z)=aiz+ag+a_1z7 1 +... for a,ap, - € R near z = o0
o Show gi(z) :== —1/gi(—z71) = 31z + 322> + ... by Schwarz reflection.

4
\
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Mapping out function

n : [0,00) — H curve in H from 0 to oo.
K: = H \ {unbounded component of H \ n([0, t])}.
gt H\ K¢ — H, gt(c0) = 0.
gi(z) =a1z+ap+a_1z 1 +... for a,ap, - € R near z = oo
o Show gi(z) :== —1/gi(—z71) = 31z + 322> + ... by Schwarz reflection.

Fix g+ by choosing a; = 1,39 = 0.

gt

0 9:(n(t))
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Mapping out function

n : [0,00) — H curve in H from 0 to oo.
K: = H \ {unbounded component of H \ n([0, t])}.
gt H\ K¢ — H, gt(c0) = 0.
gi(z) =a1z+ap+a_1z 1 +... for a,ap, - € R near z = oo
o Show gi(z) :== —1/gi(—z71) = 31z + 322> + ... by Schwarz reflection.

Fix g+ by choosing a; = 1,39 = 0.

g: is the mapping out function of the hull K;.

gt

0 9:(n(t))

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 12 /39



Mapping out function

n : [0,00) — H curve in H from 0 to co.
K: = H \ {unbounded component of H \ n([0, t])}.
gt H\ K¢ — H, gt(c0) = 0.
gi(z) =aiz+ap+a_1z7t+... for aj,ap, - € R near z = oo
o Show g;(z) := —1/gi(—z71) = a1z + 3,22 + ... by Schwarz reflection.
Fix g+ by choosing a; = 1,39 = 0.
g: is the mapping out function of the hull K;.
e Remark: Any compact H-hull K (i.e., a bounded subset of H s.t.
H \ K is open and simply connected) can be associated with a
mapping out function g : H\ K — H.

gt

77\ [0,¢]
H H

0 ge(n(t))
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Half-plane capacity

Recall: gi(z) =z+a_1z71 +a 272 +...
hcap(K:) := a_1 is the “size” of K;.

Lemma (additivity)
hcap(Ke+s) = hcap(K:) + hcap(ge(Kets \ Kt)).

_cg=z4+a_1z7t 4., Z 2z +b gz 4

N,
ZKt gt(KHs\Kt)l»’,
e — ——
0

Gies =2+ (a1 +b_1)z7t+ ...
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Half-plane capacity

Recall: gi(z) =z+a_1z71 +a 272 +...
hcap(K:) := a_1 is the “size” of K;.

Lemma (additivity)
hcap(Ktts) = hcap(K:) + hcap(ge(Kers \ Kt)).

Lemma (scaling)
hcap(rK:) = r? hcap(Kq)

21z Kt
D Observe that gi(z) := rg(z/r) is the
mapping out function of rK; and that

rge(-/7)

g:(z) = z+ r’hcap(Ky)z 1 + ...

2= Tz
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Half-plane capacity

Recall: gi(z) =z+a_1z71 +a 272 +...
hcap(K:) := a_1 is the “size” of K;.

Lemma (additivity)
hcap(Ki+s) = hcap(K:) + hcap(g:(Kets \ Kt)).

Lemma (scaling)
hcap(rK;) = r? hcap(K:)

Convention: Parametrize 7 such that hcap(K;) = 2t.
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Driving function and Loewner equation

n simple curve in (H, 0, c0) parametrized by half-plane capacity.

Definition (Driving function)
W(t) := gi(n(t))

Proposition (Loewner equation)
If T, =inf{t >0 : z€ K} then

2
5. (z) = ——————— for t €[0,7,), z)=z€H.
gt( ) gt(z) — W(t) [ ) gO( )
gt
e
77[0D
> >
0 0 W)
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o Key idea: study W instead of 7.

o If n describes the conjectural scaling limit of certain discrete models,
then W must be a multiple of a Brownian motion!

gt

7]‘ [0,t]
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Definition of SLE, in (H, 0, co)

e k>0 and (B(t))t>0 is a standard Brownian motion.
@ Solve Loewner equation with driving function W = \/kB

2
gi(z) = ————= T, = sup{t > 0 : gi(z) well-defined}.

o Define Ky :={ze H : 7, < t}.
@ Let 1 be the curve generating (K¢)¢>o0-

o Ky =H\ {unbounded component of H \ 7([0, t])},
e 7 is well-defined: Rohde-Schramm’05, Lawler-Schramm-Werner'04.

Definition (The Schramm-Loewner evolution in (H, 0, c0))
nis an SLE, in (H, 0, c0).

(Bt)iz0 = (9¢)i0 — (Ki)izo —  (0(t))e>0
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Definition of SLE, in (D, a, b)

Definition (The Schramm-Loewner evolution)

@ Let 77 be an SLE,, in (H,0, c0).
@ Then n:= f(7) is an SLE, in (D, a, b).

e Note that f is not unique since f o ¢, also sends (H, 0, c0) to
(D, a,b) if ¢,(z) := rz for r > 0.

e SLE, in (D, a, b) is still well-defined by scale invariance in law of
SLE, in (H, 0, 00) (next slide).
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Scale invariance in law of SLE,

Exercise (Scale invariance of SLE,)
o Letn be an SLE,, in (H,0, c0) and let r > 0.
o Prove that t s rn(t/r?) has the law of an SLE, in (H,0, cc).
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Scale invariance in law of SLE,

Exercise (Scale invariance of SLE,)
o Letn be an SLE,, in (H,0, c0) and let r > 0.
o Prove that t s rn(t/r?) has the law of an SLE, in (H,0, cc).

Hint: Let 7(t) = rn(t/r?) and argue that mapping out fcn g; of 7 satisfy

8t(z) = rge/(2/r), g.(2) = Oc(rge/2(2/1r)) = gi(z) — fW(t/r2)'

10,4
77|[07t/7‘2} 2Tz B
L — < »
0 0

9t /r? gt

Zr= Tz
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Conformal invariance and domain Markov property

@ Probability measure pip 55 on curves n modulo time reparametrization
in (D, a, b) for each simply connected domain D C C, a, b € OD.1

D a

identify n and no ¢ if ¢ : h — k cts and strictly increasing. &D Martin bdy of D:
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Conformal invariance and domain Markov property

@ Probability measure pip 55 on curves n modulo time reparametrization
in (D, a, b) for each simply connected domain D C C, a, b € OD.1

@ Suppose 1) ~ [iH 0 00 a.5. generated by Loewner chain.

D a
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Conformal invariance and domain Markov property

@ Probability measure pip 55 on curves n modulo time reparametrization
in (D, a, b) for each simply connected domain D C C, a, b € OD.1

@ Suppose 1) ~ [iH 0 00 a.5. generated by Loewner chain.

e Conformal invariance (Cl): If  ~ up . then ¢ o7 has law pg - 7.

b

Conformal invariance

identify n and no ¢ if ¢ : h — k cts and strictly increasing. &D Martin bdy of D:

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 19/



Conformal invariance and domain Markov property

@ Probability measure pip 55 on curves n modulo time reparametrization
in (D, a, b) for each simply connected domain D C C, a, b € OD.1

@ Suppose 1) ~ [iH 000 a.S. generated by Loewner chain.

e Conformal invariance (Cl): If n ~ pp ,p then ¢ o7 has law 1B 55

e Domain Markov property (DMP): Conditioned on 7] - for
stopping time 7, the rest of the curve 17][7700) has law 1p\ K, (t),b-

D

N

Conformal invariance Domain Markov
property

identify n and no ¢ if ¢ : h — k cts and strictly increasing. &D Martin bdy of D:
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Conformal invariance and domain Markov property

@ Probability measure pip 55 on curves n modulo time reparametrization
in (D, a, b) for each simply connected domain D C C, a, b € OD.1

@ Suppose 1) ~ [iH 0 00 a.5. generated by Loewner chain.
e Conformal invariance (Cl): If  ~ up . then ¢ o7 has law pg - 7.

e Domain Markov property (DMP): Conditioned on [y - for
stopping time 7, the rest of the curve 17][7700) has law 1p\ K, (t),b-

Theorem (Schramm’00)
The following statements are equivalent:
® [ip,ap satisfies (Cl) and (DMP).
@ Thereis a k > 0 such that jp ,p is the law of SLE,..

identify n and no ¢ if ¢ : h — k cts and strictly increasing. &D Martin bdy of D:
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Conformal invariance of percolation

KD.ab
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Conformal invariance of percolation

KD,ab ——

a

Conformal invariance: If n ~ up ,p then ¢ on has law pg 5 5.
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@ Lecture 1: Definition and basic properties of SLE, examples
o Lecture 2: Basic properties of SLE (today)
@ Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler

Lectures on Schramm-Loewner evolution by Berestycki and Norris
Imaginary geometry | by Miller and Sheffield

Key message today: The Loewner equation allows us to analyze SLE using
stochastic calculus.
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Domain Markov property of percolation
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Domain Markov property of percolation

Conditioned on 7|[o 5], the rest of the percolation interface has the law of
a percolation interface in (D \ Kas,7(25), b).
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Domain Markov property of the self-avoiding walk

o Number of length n self-avoiding paths on Z2 from (0,0): p"(1+o(1),
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Domain Markov property of the self-avoiding walk

o Number of length n self-avoiding paths on Z2 from (0,0): p"(1+o(1),
e 1 € [2.62,2.68] is the connective constant of Z2.
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Domain Markov property of the self-avoiding walk

o Number of length n self-avoiding paths on Z2 from (0,0): p"(1+o(1),
e 1 € [2.62,2.68] is the connective constant of Z2.

e The self-avoiding walk (SAW): 20 random path s.t. for w a
self-avoiding path on discrete approximation (Dy,, am, bm) to (D, a, b),

P[0 = w] = cu™ ",

where |w/| is the length of w and c is a renormalizing constant.

August 4, 2020 23/39
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Domain Markov property of the self-avoiding walk

o Number of length n self-avoiding paths on Z2 from (0,0): p"(1+o(1)
e 1 € [2.62,2.68] is the connective constant of Z.

@ The self-avoiding walk (SAW): 20 random path s.t. for w a
self-avoiding path on discrete approximation (Dp, am, bm) to (D, a, b),

P[W = w] = cp” ",

where |w| is the length of w and c is a renormalizing constant.

o Conjecture: 20 = SLEg)3.

a m

(0,0)

August 4, 2020 23/39
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Domain Markov property of the self-avoiding walk

o Number of length n self-avoiding paths on Z? from (0, 0): p"(1+e(1)),

e 1 € [2.62,2.68] is the connective constant of Z.

e The self-avoiding walk (SAW): 20 random path s.t. for w a
self-avoiding path on discrete approximation (Dp,, am, bm) to (D, a, b),

P[0 = w] = e,

where |w| is the length of w and c is a renormalizing constant.

o Conjecture: 2 = SLEg)3.

o Exercise: Given 2]g 4 the remaining path has the law of a SAW in
(Dm \ ([0, k), 25(k), bm)-
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SLE satisfies (Cl) and (DMP)

@ (ClI): follows from the definition of SLE,, on general domains (D, a, b).

v
S
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SLE satisfies (Cl) and (DMP)

@ (ClI): follows from the definition of SLE,, on general domains (D, a, b).

o (DMP): sufficient to verify for (H, 0,00) and parametrization by
half-plane capacity.

\J

Want to prove: 7; ) has the law of an SLE in (H \ K-, 7(7), 00).
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SLE satisfies (Cl) and (DMP)

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry

@ (Cl): follows from the definition of SLE, on general domains (D, a, b).
o (DMP): sufficient to verify for (H, 0, 00) and parametrization by

half-plane capacity.
o Centered mapping out functions g:(z) := g:(z) — W(t) satisfy

2
dgi(z) = =—— — dW(t), go(z) = z. CL
gt( ) gt(Z) ( ) gO( ) ( )
o Exercise: Centered mapping out functions (g ¢)s>0 of )7 satisfy
§T+t = g‘r,t © g‘r-
o Exercise: Use previous exercise to argue that (g, ;):>0 satisfies (CL)
w/driving function (W(7 +t) — W(7))r>0 g (W(t))e>o-
o The last exercise implies that 7 has the law of an SLE, in (H, 0, c0).
~:’77(T + t) §7— < = §T7t \

/\'r\\ f

1

<
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(Cl) and (DMP) imply that 7 is an SLE

@ Suppose (/tp,a b)D,apb Satisfies (Cl) and (DMP). Let n ~ pip 0,00 be
param. by half-plane capacity; let W denote the driving fcn of 7.
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(Cl) and (DMP) imply that 7 is an SLE

@ Suppose (/tp,ab)D,ap Satisfies (Cl) and (DMP). Let n ~ up 0,00 be
param. by half-plane capacity; let W denote the driving fcn of 7.

@ (Cl) = scale invariance = (W/(t))>0 g (rW(t/r?))eso.

77| [0,t]

Gt /r2
A

—_—» e e
0 0

Let 77(t) := rn(t/r?). Then n 4 7. Mapping out fcn (g¢)e>o of 77 satisfy:

8:(z) = rgy/2(2/r), gi(z) = Oc(rge/2(2/r)) = g:(z) — fW(t/r2)‘
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(Cl) and (DMP) imply that 7 is an SLE

@ Suppose (/tp,a b)D,apb Satisfies (Cl) and (DMP). Let n ~ pip 0,00 be
param. by half-plane capacity; let W denote the driving fcn of 7.

o (Cl) = scale invariance = (W(t))>0 g (rW(t/r?))e>o0.

o (DMP)

(DMP)Z ’I7|[5700) has law MH\Ks,n(s),oo-
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(Cl) and (DMP) imply that 7 is an SLE

@ Suppose (/tp,a b)D,apb Satisfies (Cl) and (DMP). Let n ~ pip 0,00 be
param. by half-plane capacity; let W denote the driving fcn of 7.
o (Cl) = scale invariance = (W(t))>0 g (rW(t/r?))e>o0.
o (DMP) = (W(t))e>0 has i.i.d. increments.
o By (DMP), 7* £ 5 and 7* is independent of 7|jo.q.

o The centered mapping out fcn (gs,¢)e>0 of 7° satisfy the centered
Loewner equation w/driving function (W(s + t) — W(s)):>0.

o Combining the above, (W(s+ t) — W(s))¢>0 2 (W(t))e>o and is
independent of W|j .

TSen(s+t) s TR Gs.t .
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(Cl) and (DMP) imply that 7 is an SLE

@ Suppose (/tp,a b)D,apb Satisfies (Cl) and (DMP). Let n ~ pip 0,00 be
param. by half-plane capacity; let W denote the driving fcn of 7.

o (Cl) = scale invariance = (W(t))e=0 = (rW(t/r?))eso.

e (DMP) = (W(t))e>0 has i.i.d. increments.

e (Cl) + (DMP) = W = /kB for some k > 0.
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Phases of SLE

Rohde-Schramm’05: SLE,; has the following phases:
@ k €[0,4]: The curve is simple.
@ k € (4,8): The curve is self-intersecting and has zero Lebesgue measure.

@ K > 8: The curve fills space.

k € [0,4] Kk € (4,8) Kk >8

Figures by P. Nolin, W. Werner, and J. Miller
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Phases of SLE

Rohde-Schramm’05: SLE,; has the following phases:
@ x €[0,4]: The curve is simple.

@ k € (4,8): The curve is self-intersecting and has zero Lebesgue measure.

@ k > 8: The curve fills space.

K €[0,4] K € (4,8)

Figures by P. Nolin, W. Werner, and J. Miller
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Phases of SLE

Rohde-Schramm’05: SLE,; has the following phases:
@ k €[0,4]: The curve is simple.
@ k € (4,8): The curve is self-intersecting and has zero Lebesgue measure.

@ K > 8: The curve fills space.

k € [0,4] Kk € (4,8) Kk >8

Figures by P. Nolin, W. Werner, and J. Miller
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Phase transition at Kk = 4

o Ifk € [0,4] then n is a.s. simple (i.e., n(t1) # n(t2) for t1 # t2).
e Ifk > 4 then n is a.s. not simple.

We will deduce the lemma from the following result, where

e =inf{t >0 : x € K;} for x > 0.

o Ifk €[0,4] then 7, = o0 a.s.

@ If k> 4 then 7, < 00 a.s.
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Phase transition at Kk = 4

Recall 7, = inf{t > 0 : x € K;} for x > 0.

o Ifk €0,4] then 7 = o0 a.s.

o Ifk >4 then 7, < >0 a.s.

2
gt(1) — VkB(t)’

w.l.o.g x=1; &i(1) =
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Phase transition at Kk = 4

Recall 7, = inf{t > 0 : x € K;} for x > 0.

o Ifk €[0,4] then 7, = o0 a.s.

@ If k> 4 then 7, < 00 a.s.

. 2
w.lo.g x=1; &i(1) = 5(1) = VrB(D)’

Y(t) = v %(g(1) — VEB(1)),
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Phase transition at Kk = 4

Recall 7, = inf{t > 0 : x € K;} for x > 0.

o Ifk €[0,4] then 7, = o0 a.s.

@ If k> 4 then 7, < 00 a.s.

w.lo.g x=1; &i(1) =

gt(]-) - \/EB(t),
Y(t) = 67V(g:(1) — VEB(1)),
7 =inf{t>0: Y(t) =0},
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Phase transition at Kk = 4

Recall 7, = inf{t > 0 : x € K;} for x > 0.

e Ifk €[0,4] then 7, = o0 a.s.

@ Ifxk > 4 then 7, < 00 a.s.

N 2
)= gy~ vaB
V(1) = 5 (g(1) — VB(1),

71 =inf{t >0 : Y(t) =0},

w.lo.g x =1,

2 4
dY(t) = ———dt — dB(t), so Y(t) is a <E + 1)—dim. Bessel process.

kY (t)
Qf\ - VEY (1) v
0 1 % T 0 B0, dme(12) dm>

K€ (4,00) € (0,4]
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Phase transition at Kk = 4

o Ifk €[0,4] then n is a.s. simple e N DR
(ie. 1(tr) £ n(ta) for t1 £ b)) N -
o Ifk > 4 then n is a.s. not 0
simple. K € [0,4]
T« =inf{t >0 : x € K¢}, x > 0. () ({,‘ :: G \\
- l’ \\ ya
—8—&’—

o Ifk €0,4] then 7, = o0 a.s.
@ Ifk >4 then 7, < 0 a.s.
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Locality of SLEg

Proposition
@ 1) SLEs in (D, x,y). Set 7 :=inf{t >0 : n(t) € arc(y,y)}.
e Define 1 and T in the same way for (D, x,y).

d -
® Then i1 = 77

n(7)
Y ~
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Proposition
o 1) SLEs in (D, x,y). Set T :=inf{t >0 : n(t) € arc(y,y)}.

@ Define 1 and T in the same way for (D, x,y).

d ~
® Thennlp- =1

[0’:’:] :

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 30/39



Locality of SLEg

Proposition
@ 7 SLEg in (D,x,y). Set 7 :=inf{t >0 : n(t) € arc(y,y)}.

e Define 1 and T in the same way for (D, x,y).

d -
® Then i1 = 77

n

Want to prove: If nis an SLEg in (H, 0, 00) then 7 has the law of an SLEg
in (H, 0, y) until hitting L.
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Locality of SLEg: Proof sketch
| gt 9i

By = gi o Bog; !

———————»
Wi(t) W (t)
e 7 SLEg in (H, 0, 00); g+ mapping out function; W driving function.
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Locality of SLEg: Proof sketch
| gt 9i

By = gi o Bog; !

———————»

W(t) w(t)

e 7 SLEg in (H, 0, 00); g+ mapping out function; W driving function.
e ® conformal map sending (H, 0, y) to (H, 0, co).
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Locality of SLEg: Proof sketch
o0, +- 0
| gt 9i

By = gi o Bog; !

v W
e 7 SLEg in (H, 0, 00); g+ mapping out function; W driving function.
e ® conformal map sending (H, 0, y) to (H, 0, co).
o n*(t) := ®(n(t)); gf map. out fcn; W*(t) = &(W(t)) driving fen.
" b'(t) ‘
&i(z) = 2 (2) - W (2)’ b(t) = hcap(n*([0, t])).

t
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Locality of SLEg: Proof sketch
o0, +- 0
| gt 9i

By = gi o Bog; !

W) W (t)
e 7 SLEg in (H, 0, 00); g+ mapping out function; W driving function.
e ® conformal map sending (H, 0, y) to (H, 0, co).
o n*(t) := ®(n(t)); gf map. out fcn; W*(t) = &(W(t)) driving fen.
" b'(t) ‘
&i(z) = 2 (2) - W (2)’ b(t) = hcap(n*([0, t])).

t

e Want to show: n* law of SLE¢ in (H, 0, 00) until hitting L*.
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Locality of SLEg: Proof sketch
o0, +- 0
| gt 9i

By = gi o Bog; !

W) W (t)
n SLEe in (H, 0, 00); g+ mapping out function; W driving function.
® conformal map sending (H, 0, y) to (H, 0, c0).
n*(t) := ®(n(t)); g map. out fcn; W*(t) = &(W(t)) driving fen.
" b'(t) ‘
&i(z) = 2 (2) - W (2)’ b(t) = hcap(n*([0, t])).

t

Want to show: n* law of SLEg in (H, 0, 00) until hitting L*.
Equivalently, W*(t) = v/6B*(b(t)/2) for B* std Brownian motion.
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Locality of SLEg: Proof sketch
o0, +- 0
| gt 9i

By = gi o Bog; !

e
W(t) W (t)
n SLEe in (H, 0, 00); g+ mapping out function; W driving function.
® conformal map sending (H, 0, y) to (H, 0, c0).
n*(t) := ®(n(t)); g map. out fcn; W*(t) = &(W(t)) driving fen.

N b'(t) _ .
&(2) = 2 (2) - W (2)’ b(t) = hcap(n*([0, t])).

Want to show: n* law of SLEg in (H, 0, 00) until hitting L*.
Equivalently, W*(t) = v/6B*(b(t)/2) for B* std Brownian motion.
e Find dW* by Itd's formula; prove and use ®.(W(t)) = =3¢ (W (t)).
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Restriction property

@ Let pup x,, for D C C simply connected and x,y € 9D be a family of
probability measures on curves n in D from x to y.

o Let n ~ up , for some (D, x,y) and let U C D be simply connected
s.t. x,y € 0U.

@ The measures jip x , satisfy the restriction property if 1) conditioned
to stay in U has the law of a curve sampled from py ., .

v

For which k > 0 does SLE,; satisfy the restriction property?

Y
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction property?
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction property?

o Let 2 be a simple random walk on discrete approximation
(Dms am, bm) to (D, a, b).

\b m
[]

am
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction property?

o Let 2 be a simple random walk on discrete approximation
(Dms am, bm) to (D, a, b).

@ The loop-erased random walk (LERW) 20 is loop-erasure of 2.
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction prop.? NO

o Let 2 be a simple random walk on discrete approximation
(Dms am, bm) to (D, a, b).

@ The loop-erased random walk (LERW) 20 is loop-erasure of 2.
o Let U,, C D,, be connected s.t. a,, by € Uny.
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction prop.? NO

o Let 20 be a simple random walk on discrete approximation
(Dmy am, bm) to (D, a, b).

@ The loop-erased random walk (LERW) 20 is loop-erasure of 2.

o Let U,, C Dy, be connected s.t. ap,, by € Up,.

e “LERW in (Dp,, am, bm) conditioned to stay in U," # “LERW in
(Um, am, bm)", since the latter requires Difle Um (not just 20 C Up).
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction prop.? NO
@ Does the self-avoiding walk satisfy the restriction property?

The self-avoiding walk (SAW) 20 is s.t. for any fixed self-avoiding path
w on discrete approximation (D, am, bm) to (D, a, b),

P[0 = w] = cp™ !,

where p is the connective constant, |w| is the length of w, and c is a
renormalizing constant.

bm
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Restriction property of discrete models

@ Does the loop-erased random walk satisfy the restriction prop.? NO
@ Does the self-avoiding walk satisfy the restriction property? YES

The self-avoiding walk (SAW) 20 is s.t. for any fixed self-avoiding path
w on discrete approximation (Dp,, am, bm) to (D, a, b),

P = w] = cp ",

where p is the connective constant, |w| is the length of w, and c is a
renormalizing constant.

“SAW in (Dm, am, bm) cond. to stay in Up," 2 “SAW in (Um, am, bm)"
bTTL
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Restriction property of SLE8/3

Proposition
o 1) SLEg3 in (H,0,00); K C H s.t. H'\ K simply conn., 0,00 ZK.
® Thenn cond. on N K = () has the law of SLEg,3 in (H \ K, 0, c0).
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Restriction property of SLE8/3

Proposition
o 1) SLEg3 in (H,0,00); K C H s.t. H'\ K simply conn., 0,00 ZK.
® Thenn cond. on N K = () has the law of SLEg,3 in (H \ K, 0, c0).

@ Proposition equivalent to the following for K’ O K
PlnNK" =0 [nNK = 0] = PlnNngx(K') = 0], (A)

since RHS = P[ N K" = (] for i) an SLEg3 in (H \ K, 0, 00).

n gk =z+a+0(z71h

9 (K7)

KI

\
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Restriction property of SLE8/3

Proposition

® 1) SLEg3 in (H,0,00); K C H s.t. H'\ K simply conn., 0 ,00 € K.
® Thenn cond. on N K = () has the law of SLEg,3 in (H \ K, 0, c0).

@ Proposition equivalent to the following for K’ O K
PlINK' = 0[nnK = 0] = Plnngx(K') = 0], (A)

since RHS = P[; N K" = (] for i) an SLEg3 in (H\ K,0,00).
o Key identity (proof omitted here): P[nN K = ] = g(0)>/8.

o (1 Gr=ztarol

9 (K7)

\
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Restriction property of SLE8/3

Proposition

® 1) SLEg3 in (H,0,00); K C H s.t. H \ K simply conn., 0, o ¢ K.
o Then n cond. on nN K = () has the law of SLEg3 in (H \ K, 0, 00).

@ Proposition equivalent to the following for K’ D K

PpNK' =0 [nnK = 0] = Plnngk (K') = 0], (A)
since RHS = P[; N K’ = (] for i) an SLEg3 in (H\ K,0,00).
o Key identity (proof omitted here): P[nN K = ] = g(0)°>/8.

e This identity, Bayes' rule, and gk’ = gz, (k") © 8k |mpIy (A).

Ul gk =z+a+0(z71h

9k (K')
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Restriction property of SLE8/3

Proposition

o 1 SLEg)3 in (H,0,00); K C H s.t. H\ K simply conn., 0,00 & K.
® Then 1 cond. on nN K = () has the law of SLEg3 in (H \ K, 0, c0).

@ Proposition equivalent to the following for K’ O K

PlnNK" =0 [nNK = 0] = Plnngx(K') = 0], (A)
since RHS = P[; N K’ = (] for 7) an SLEg3 in (IHI\ K,0,00).
Key identity (proof omitted here): P[y N K = 0] = gj (0 )5/8

o
o This identity, Bayes' rule, and gk’ = gz, (k") © 8k |mp|y (A).
@ Remark: Key identity with exponent o > 5/8 represent other random

sets satisfying conformal restriction.

n gk =z+a+0(z71

9 (K7)

K/
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Chordal, radial, and whole-plane SLE

D@ 5

chordal SLE radial SLE whole-plane SLE
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A few open questions

@ Convergence of discrete models, e.g.

self-avoiding walk (k = 8/3)

universality for percolation: Z2; Voronoi tesselation (k = 6)
Fortuin-Kastelyn model (k € (4, 8))

6-vertex model (k = 12, general k)
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A few open questions

@ Convergence of discrete models, e.g.

self-avoiding walk (k = 8/3)

universality for percolation: Z?2; Voronoi tesselation (k = 6)
Fortuin-Kastelyn model (k € (4, 8))

6-vertex model (k = 12, general k)

For each edge

we have

- O ——
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A few open questions

@ Convergence of discrete models, e.g.

self-avoiding walk (k = 8/3)

e universality for percolation: Z2; Voronoi tesselation (k = 6)
o Fortuin-Kastelyn model (x € (4, 8))
o 6-vertex model (k = 12, general k)

(o) Gewvertex confignration (] Peano core
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A few open questions

@ Convergence of discrete models, e.g.
o self-avoiding walk (x = 8/3)
o universality for percolation: Z?; Voronoi tesselation (k = 6)
o Fortuin-Kastelyn model (k € (4,8))
o 6-vertex model (k = 12, general k)

AR

i

Random planar map; figure due to Gwynne-Miller-Sheffield
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A few open questions

@ Convergence of discrete models, e.g.
o self-avoiding walk (x = 8/3)
o universality for percolation: Z?2; Voronoi tesselation (k = 6)
o Fortuin-Kastelyn model (x € (4,8))
o 6-vertex model (k = 12, general k)
@ Scaling limit of statistical physics models in 3d, e.g.
o loop-erased random walk (Kozma'07)
e uniform spanning tree (Angel-Croydon—Hernandez-Torres—Shiraishi'20)
e percolation

3d UST; figure by Angel-Croydon—Hernandez-Torres—Shiraishi
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A few open questions

@ Convergence of discrete models, e.g.
o self-avoiding walk (x = 8/3)
o universality for percolation: Z2; Voronoi tesselation (k = 6)
o Fortuin-Kastelyn model (x € (4,8))
o 6-vertex model (k = 12, general k)
@ Scaling limit of statistical physics models in 3d, e.g.
o loop-erased random walk (Kozma'07)
e uniform spanning tree (Angel-Croydon—Hernandez-Torres—Shiraishi'20)
e percolation

Figure by Sheffield-Yadin
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A few open questions

@ Convergence of discrete models, e.g.
o self-avoiding walk (x = 8/3)
o universality for percolation: Z2; Voronoi tesselation (k = 6)
o Fortuin-Kastelyn model (x € (4,8))
o 6-vertex model (k = 12, general k)
@ Scaling limit of statistical physics models in 3d, e.g.
o loop-erased random walk (Kozma'07)
o uniform spanning tree (Angel-Croydon—Hernandez-Torres—Shiraishi'20)
e percolation
@ Path properties of SLE, e.g.
e Hausdorff measure of SLE
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Thanks for attending!
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Radial SLE

e g : D\ K; — D defined such that g+(0) = 0 and g;(0) > 0.
e 1) parametrized such that t = log g/(0).
o Radial Loewner equation, where B is a standard Brownian motion

) ei\/EB(t) +gt(Z)
gt(z) - gf(z) ei\/EB(t) N gt(z)7 gO(Z) =Z.
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Radial SLE

e g : D\ K; — D defined such that g+(0) = 0 and g/(0) > 0.
e 1) parametrized such that t = log g/{(0).
@ Radial Loewner equation, where B is a standard Brownian motion

iv/rB(t)
. _ e + &t(2)
gt(z) - gt(z) el'\/EB(t) _ gt(Z)7

go(z) = z.

D .
z+— —ilogz

1 < om

0
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Whole-plane SLE

Conditioned on 7|(_, ¢, the remainder 7| ) of the curve has the law of
radial SLE in (C\ K¢, n(t), b).

N. Holden (ETH-ITS Ziirich) SLE and imaginary geometry August 4, 2020 39/39



