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• euclidean quantum fields
• what is stochastic quantisation?
• varieties of stochastic quantisation
• infinite volume limit (L→∞)
• renormalization and small scale limit (ε→0)
• properties of stochastically quantised measures
• elliptic stochastic quantisation (?) & supersymmetry

reference material
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Euclidean quantum fields (EQFs)

are particular class of probability measures on 𝒮ʹ(Rd):

�
𝒮ʹ(Rd)

O(φ)ν(dφ)= 1Z�
𝒮ʹ(Rd)

O(φ)e−S(φ)dφ,

S(φ)=�
R
d

1
2|∇φ(x)|2+ 12m

2|φ(x)|2+V(φ(x))dx

for some non-linear function V:R→R�0, e.g. a polynomial bounded below, expo-
nentials, trig funcs.
Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories
in the sense of Wightman via the reconstruction theorem of Osterwalder–Schrader.

ill-defined representation:
• large scale (IR) problems: the integral in S(φ) extends over all the space, sample
paths not expected to decay at infinity in any way.

• small scale (UV) problems: sample paths are not expected to be function, but
only distributions, the quantity V(φ(x)) does not make sense.



EQFs – history

x Construct rigorously QM models which are compatible with special relativity,
(finite speed of signals and Poincaré covariance of Minkowski space Rn+1).
xQuantum field theory (QM with ∞ many degrees of freedom)
xWightman axioms ('60-'70): Hilbert space, representation of the Poincaré group,
fields operators (to construct local observables).
x Constructive QFT program: Hard to find models of such axioms. Examples in R1+1
were found in the ʹ60.
x Euclidean rotation: t→ it=x0 (imaginary time). Rn+1→Rd Minkowski → Euclidean
xOsterwalder–Schrader theorem : gives precise condition to perform the passage
to/from Euclidean space (OS axioms for Euclidean correlation function).

x Surprise: in some cases the Euclidean theory is a probability measure on𝒮ʹ(Rd).
x High point of CQFT: construction of Φ3

4 (Euclidean version of a scalar field in R2+1

Minkowski space).



EQFs – for us

An EQFT is a prob. measure μ on𝒮ʹ(Rd) such that the following holds (OS axioms)

1. Regularity: ∫𝒮ʹ(Rd)e
α‖φ‖sμ(dφ) <∞ where ‖φ‖s is some norm on 𝒮ʹ(Rd) and

α>0.
2. Euclidean covariance: The Euclidean group G (rotation+translation) acts on

𝒮ʹ(Rd) and the measure μ is invariant under this action. Example:

�
𝒮ʹ(Rd)

φ(f(⋅+h))μ(dφ)=�
𝒮ʹ(Rd)

φ(f(⋅))μ(dφ), f B−−−𝒮(Rd).

3. Reflection positivity: Let θ(x1, . . .xd)= (−x1,x2, . . . ,xd) B−−−Rd, then for any bounded
measurable F:𝒮ʹ(R>0×Rd−1)→C we have

�F(θφ)F(φ)μ(dφ)�0.

Example: for x1>0, φ(x1,x2, . . .xd)=φ(δ(x1,x2, . . .xd)), (x1,x2, . . .xd)B−−−Rd

�φ(−x1,x2, . . . ,xd)φ(x1,x2, . . .xd)μ(dφ)�0, �φ(y)φ(yʹ)φ(θy)φ(θyʹ)μ(dφ)�0.



Gaussian free field (GFF)

Simplest example of EQFT. We take a Gaussian measure μ on 𝒮ʹ(Rd) with covari-
ance

�φ(x)φ(y)μ(dφ)=G(x−y)=�
Rd

eik(x−y)

m2+|k|2
dk

(2π)d = (m2−Δ)−1(x−y), x,yB−−−Rd

and zero mean. Reflection positive, Eucl. covariant and regular. This is the GFF with
mass m >0. This measure can be used to construct a QFT in Minkowski space but
unfortunately this theory is free, i.e. there is no interaction.
Other gaussian measures which are reflection positive, Eucl. covariant and regular
can be constructed by positive linear combinations of Gaussians, i.e. by taking

�φ(x)φ(y)μ(dφ)=�
R+
λ(dr)�

R
d

eik(x−y)

r+|k|2
dk

(2π)d .

These are the only known RP Gaussian measures.
Note that G(0)=+∞ if d�2, this implies that the GFF is not a function.



add interaction

Can we construct a non-Gaussian EQFT?
The heuristic idea is to try to maintain the “Markovianity” of the GFF μ. Heuristically
we want something like

ν(dφ)= e
∫ΛV(φ(x))dx

Z μ(dφ),

with Λ=Λ+ < θΛ+ and V:R→R so that

�
Λ
V(φ(x))dx=�

Λ+
V(φ(x))dx+�

Λ+
V((θφ)(x))dx

since it will be RP:

�F(θφ)F(φ)ν(dφ)=� F(θφ)e∫Λ+V(θφ(x))dxF(φ)e∫Λ+V(φ(x))dx

Z μ(dφ)�0.

Unfortunately even if we can make sense of it this measure will not be translation
invariant, ideally we would like to have Λ=Rd.



approximation

➊ go on a lattice: Rd→Zεd= (εZ)d with spacing ε>0 and make it periodic Zεd→Zε,L
d =

(Zε/2πLN)d.
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Zε,L
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R
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d
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Sε(φ) dφ

RP (on the torus) + translation invariant (on the lattice). Lost rotations.

➋ Given φ B−−−RZε,L
d
and f B−−−𝒮(Rd) then we can define

φ(f)= �
xB−−−Zε,Ld

φ(x)f(x)

which allows to look at νε,L as a measure on 𝒮ʹ(Rd).
ε is an UV regularisation and L the IR one.



➌ choose Vε appropriately so that νε,L→ν to some limit as ε→0 and L→∞. We take
Vε polynomial bounded below (otherwise integrab. problems). d=2,3.

Vε(ξ)=λ(ξ4−aεξ2)

The limit measure will depend on λ>0 and on (aε)ε which has to be s.t. aε→+∞ as
ε→0. It is called the Φd

4 measure.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x for d=2 other choices are possible:

Vε(ξ)=λξ2l+�
k=0

2l−1

ak,εξk, Vε(ξ)=aεcos(βξ)

Vε(ξ)=aεcosh(βξ), Vε(ξ)=aεexp(βξ)

x for d=3 “only” 4th order (6th order is critical).
x for d=4 all the possible limits are Gaussian (see recent work of Aizenmann-Duminil
Copin, arXiv:1912.07973)



stochastic quantisation

We are interested in limits of quantities like

lim
ε→0,L→∞

�φ(f1)⋅ ⋅ ⋅φ(fn)νε,L(dφ)=�φ(f1)⋅ ⋅ ⋅φ(fn)ν(dφ)

for arbitrary test functions f1,... , fnB−−−𝒮(Rd). For d=2,3 problem solved in ʹ70−ʹ80 by
Glimm, Jaffe, . . .

Parisi-Wu, Neson ('84): introduce a stochastic differential equation (SDE) which has
ν as invariant measure. For clarity we work with νε,L. The SDE is a Langevin equation
of the form

dΦ(t,x)
dt =−∇φSε(Φ(t,x))+21/2ξ(t,x), x B−−−Λε,L=Zε,Ld , t�0

Here ξ(t,x) is a space-time white noise.
If Law(Φ(t=0))=νε,L then Law(Φ(t))=νε,L for all t�0.



Usually more is true, for any φ(0) on has that Law(φ(t))→ νε,L as t→∞

dΦ(t,x)
dt =−∇φSε(Φ(t,x))+21/2ξ(t,x)

dΦε,L(t,x)
dt =−(m2−Δε)Φε,L(t,x)−Vέ (Φε,L(t,x))+21/2ξ(t,x)

A (discrete) parabolic SPDE.

νε,L~Φε,L(t)=Gε,L(Φε,L(0),ξ).

If we can take the t→∞ limit we expected that

νε,L~Φε,L(∞)= Ĝε,L(ξ).

The idea now is to use this equation to take the limit ε→0. L→∞.
Why is this a good idea?

stochastic quantisation is a stochastic analysis of EQFs



The dynamics construct for you amap Ĝε,Lwhich transform a gaussianmeasure into
νε,L

In particular this map passes to the limit as ε→0 and L→∞ and give a SPDE in the
limit

dΦ(t,x)
dt =−(m2−Δ)Φ(t,x)−ʹʹVʹ(Φ(t,x))ʹʹ +21/2ξ(t,x).

The goal of these lectures is to give you a sketch of the proof of

Theorem. d=3 provided (aε)ε is choses approp. there exist a stationary in space
and time solution to the limit SPDE and moreover the law of the solution at any
given time in a non-Gaussian EQFT ν (without rotation invariance). We can prove
it satisfies an IBP formula:

�∇φF(φ)ν(dφ)=�F(φ)(−(m2−Δ)φ−:φ3: )ν(dφ).

[details in Gubinelli-Hofmanova CMP 2021, “A PDE construction...”]



stochastic analysis

x Ito & Dœblin introduced a variety of analysis adapted to the sample paths of a
stochastic process.
x consider a family of kernels (Pt)t�0 on Rd satisfying Chapman–Kolmogorov equa-
tion

Pt+s(x, dy)=�Ps(x, dz)Pt(z, dy)

which defines a probabilityP on C(R�0,Rd): the law of a continuous Markov process.
x sample paths have a “tangent” process. Ito identified it as a particular Lévy
process: the Brownian motion (Wt)t.
x stochastic calculus: from the local picture to the global structure via stochastic
differential equation (SDE)

dXt=a(Xt)dWt+b(Xt)dt



x these are the basic building blocks of stochastic analysis

x like in analysis, the fact that we can consider infinitesimal changes simplify the
analysis and make appear universal underlying objects:
• polynomials → calculus, Taylor expansion
• Brownianmotion and its functionals → Ito calculus, stochastic Taylor expansion

to have an analysis we need:
• a change parameter along which consider “change” (time for diffusions)
• a suitable building block for the infinitesimal changes (Brownian motion for
diffusion)

x other examples: rough paths, regularity structures, SLE,. . .



Newton's calculus Ito's calculus

planet orbit object Markov diffusion

(x,y) B−−−𝒪 B−−−R
2

global description Pt(x, dy)

α(x−x0)2+β(y−y0)2=γ ⋅ Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy)
t change parameter t

x(t+δt)≈x(t)+aδt+o(δt) local description Pδt(x, dy)≈e−
(y−x−b(x)δt)a(x)−1(y−x−b(x)δt)

2δt
dy

Zx(δt)d/2

at+bt2+ ⋅ ⋅ ⋅ building block (Wt)t
(ẍ(t), ÿ(t))=F(x(t),y(t)) local/global link dXt=a(Xt)dWt+b(Xt)dt



Ito's calculus stoch. quantisation

Markov diffusion object EQF

Pt(x,dy) global description ν B−−−Prob(𝒮ʹ(Rd))

Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy) ⋅
1
Z∫𝒮ʹ(Rd)O(φ)e−S(φ)dφ

t change parameter t

Pδt(x, dy)≈e−
(y−x−b(x)δt)a(x)−1(y−x−b(x)δt)

2δt
dy

Zx(δt)d/2
, local description ϕ(t+δt)≈αϕ(t)+βδX(t)+ ⋅ ⋅ ⋅

(Wt)t building block
(X(t))t

∂tX=
1
2 [(Δx −m2)X]+21/2ξ

dXt=a(Xt)dWt+b(Xt)dt local/global link ∂tϕ=
1
2[(Δx −m2)ϕ−Vʹ(ϕ)]+21/2ξ
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varieties of stochastic quantisation

• parabolic stochastic quantisation. the parameter is an additional “fictious”
coordinate t B−−−R, playing the röle of a simulation time. The EQF is viewed as
the invariant measure of a Markov process (SDE). Building block is a space-
time white noise. [Parisi/Wu, Nelson, Jona-Lasinio/Mitter, Albeverio/Röckner, Da Prato/Debbusche, Hairer, Catellier/Chouk,

Mourrat/Weber, G./Hofmanova, Albeverio/Kusuoka, Chandra/Moinat/Weber, Shen, Garban, many others. . . ]

∂tϕ=
1
2[(Δx −m2)ϕ−pʹ(ϕ)]+21/2ξ

• canonical stochastic quantisation. same as for parabolic, but the evolution
takes place in “phase space” and the SDE is second order in time, giving rise
to a stochastic wave equation. [G./Koch/Oh, Tolomeo, Oh/Robert/Wang]

∂t2ϕ+∂tϕ=
1
2[(Δx −m2)ϕ−pʹ(ϕ)]+21/2ξ



• elliptic stochastic quantisation. the parameter is a coordinate z B−−−R2. Building
block is a white noise in Rd+2. An elliptic stochastic partial differential equation
describes the EQF as a function of the white noise. Link with supersymmetry.
[Parisi/Sourlas, Klein/Landau/Perez, Albeverio/De Vecchi/G., Barashkov/De Vecchi]

−Δzϕ(z,x)= 12[(Δx −m2)ϕ(z,x)−pʹ(ϕ(z,x))]+21/2ξ(z,x)

• variational method. the parameter t�0 is a energy scale. Building block is the
Gaussian free field decomposed along t. The EQF is described as the solution of
a stochastic optimal control problem. [Barashkov/G.]

• rg method. the parameter t � 0 is a energy scale. Building block is the Gaus-
sian free field decomposed along t. The effective action of the EQF satisfies
an Hamilton–Jacobi–Bellmann equation. [Wilson, Wegner, Polchinski, Salmhofer, Brydges/Kennedy, Mitter,

Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau, Bauerschmidt/Hofstetter, also many others. . . ]
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