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In this talk we focus on the Widom-Rowlinson

model of interacting disks in the plane.

On the continuum, all questions about phase transitions,

critical behaviour and metastability turn out to be much

more challenging than on lattices and graphs.

In the Widom-Rowlinson model, the interactions are purely

geometric, which makes it more amenable to a detailed

analysis.



§ THE STATIC WIDOM-ROWLINSON MODEL

Let T ⊂ R2 be a finite torus. The set of finite particle

configurations in T is

Γ = {γ ⊂ T : N(γ) ∈ N0}, N(γ) = cardinality of γ.

disks of radius 1 around γ



The grand-canonical Gibbs measure is

µ(dγ) =
1

Ξ
zN(γ) e−βH(γ)Q(dγ),

where

• Q is the Poisson point process with intensity 1,
• z ∈ (0,∞) is the chemical activity,
• β ∈ (0,∞) is the inverse temperature,
• Ξ is the normalising partition function,

H is the interaction Hamiltonian given by

H(γ) =
∣∣∣∣ ⋃
x∈γ

B(x)
∣∣∣∣− ∑

x∈γ
|B(x)|,

i.e., minus the total overlap of the disks of radius 1 around

γ. This makes the interaction attractive.



For β > βc a phase transition occurs at

z = zc(β) = β e−πβ

in the thermodynamic limit, i.e., T → R2. No closed form

expression is known for βc.

β

zc(β)

•

βc

vapour

liquid

Ruelle 1971

Lebowitz & Gallavotti 1971

Chayes, Chayes & Kotecký 1995



The one-species model can be seen as the projection of a

two-species model with hard-core repulsion:

disks of radius 1
2

around γred and γblue

EXERCISE!



§ THE DYNAMIC WIDOM-ROWLINSON MODEL

The particle configuration evolves as a continuous-time

Markov process (γt)t≥0 with state space Γ and generator

(Lf)(γ) =
∫
T

dx b(x, γ) [f(γ ∪ x)− f(γ)]

+
∑
x∈γ

d(x, γ) [f(γ\x)− f(γ)],

i.e., particles are born at rate b and die at rate d given by

b(x, γ) = z e−β[H(γ∪x)−H(γ)], x /∈ γ,
d(x, γ) = 1, x ∈ γ.

The grand-canonical Gibbs measure is the unique reversible

equilibrium of this stochastic dynamics.

particles do not move!



KEY QUESTION:

Let � and � denote the set of configurations where T is

empty, respectively, full.

• Start with T empty, i.e., γ0 = �.

[preparation in vapour state]

• Choose z = κzc(β), κ ∈ (1,∞).

[reservoir is super-saturated vapour]

• Wait for the first time τ� when the system fills T.

[condensation to liquid state]

What can be said about the law of τ�
in the limit as β →∞ for fixed T and κ?



For the choice z = κzc(β) = (κβ)e−πβ, the grand-canonical

Gibbs measure reads

µ(dγ) =
1

Ξ
(κβ)N(γ) e−βV (γ)Q(dγ)

and the Dirichlet form associated with the dynamics reads

E(f, f) =
1

Ξ

∫
Γ
Q(dγ)

∫
T

dx (κβ)N(γ∪x) e−βV (γ∪x)

×
[
f(γ ∪ x)− f(γ)

]2
,

where N(γ) is the cardinality of γ and V (γ) is the volume

of the halo of γ.



Both quantities play a crucial role for the computation of

capacities that underpin the potential-theoretic approach

to metastability. Recall that the Dirichlet principle gives

cap(�,�) = inf
f : Γ→[0,1]

f |�=1, f |�=0

E(f, f)

and that

E�(τ�) =
[1 + o(1)]µ(�)

cap(�,�)
=

[1 + o(1)]Q(�)

Ξ cap(�,�)

in the metastable regime.



HEURISTICS:

• Since particles have a tendency to stick together, they

form some sort of droplet.

• Inside the droplet, particles are distributed according

to a Poisson process with intensity κβ � 1.

• Near the perimeter of the droplet, particles are born at

a rate that depends on how much they stick out.

• For small R the droplet tends to shrink, for large R it

tends to grow. The curvature of the droplet determines

which of the two prevails.



§ THREE THEOREMS

For R ∈ [1,∞) and κ ∈ (1,∞), let

Φκ(R) = πR2 − κπ(R− 1)2, Rc(κ) =
κ

κ− 1
.

R

Φκ(R)

1 Rc(κ)
κ

Rc(κ)

1

1



A critical droplet of radius Rc(κ) filled with 1-disks:

� β disks in the interior, � β1/3 disks on the boundary

Stillinger & Weeks 1995

capillary waves



THEOREM 1 [Arrhenius formula]

For every κ ∈ (1,∞),

E�(τ�) = exp
[
βΦ(κ)− β1/3 Ψ(κ) + o(β1/3)

]
, β →∞,

where

Φ(κ) = Φκ(Rc(κ)) =
πκ

κ− 1
,

Ψ(κ) = Ψκ(Rc(κ)) = s∗
κ2/3

κ− 1
,

where s∗ ∈ R is a constant that comes from an effective

microscopic model with hard-core constraints.



Plots of the key quantities in the Arrhenius formula:

κ

Φ(κ)

1

π
κ

Ψ(κ)

1

Φ(κ) = volume free energy critical droplet

Ψ(κ) = surface free energy critical droplet

EXERCISE!



THEOREM 2 [Exponential law]

For every κ ∈ (1,∞),

lim
β→∞

P�

(
τ�/E�(τ�) > t

)
= e−t ∀ t ≥ 0.

The exponential law is typical for metastable

crossover times: the critical droplet appears after

many unsuccessful attempts.



For δ > 0, let

Cδ(κ) =
{
γ ∈ Γ: ∃x ∈ T such that

BRc(κ)−δ(x) ⊂ halo(γ) ⊂ BRc(κ)+δ(x)
}
.

THEOREM 3 [Critical droplet]

For every κ ∈ (1,∞),

lim
β→∞

P�

(
τCδ(β)(κ) < τ�

∣∣∣ τ� > τ�
)

= 1

when

lim
β→∞

δ(β) = 0, lim
β→∞

β1/2δ(β) =∞.



The estimation of the Dirichlet form requires an evaluation

of high-dimensional surface integrals. The details of the

computation are rather delicate:

variational principles
isoperimetric inequalities
volume large deviations
surface moderate deviations
microscopic hard-core Gibbs measures
mesoscopic capillary waves
coarse-graining techniques
capacities estimates
...

“a beautiful nightmare”

EXERCISE!



§ HIGHER DIMENSIONS

What if we consider the same model in Rd, with the unit

disks being replaced by unit balls? For now this extension

is too hard too handle, but we expect that

E�(τ�) = exp
[
βΦ(κ)−β(d−1)(d+1) Ψ(κ)+h.o.

]
, β →∞,

with

Φ(κ) = A
κ̂

κ̂− 1
,

Ψ(κ) = B

(
κ̂

κ̂− 1

)d−1
κ̂−1/(d+1),

where κ̂ = κ1/(d−1) and A,B ∈ (0,∞) are constants.



§ DIFFERENT SHAPES

What happens when the unit disks are replaced by convex

compact sets? For now also this extension is too hard too

handle, but we expect that

The surface free energy scales with β and κ in a

way that depends on the shape of the set.

Work in progress with Yogesh Dhandapani



§ CONCLUSION

We have obtained a detailed description of metastability
for a model of interacting particles in the continuum.

The Arrhenius formula for the average condensation

time involves both the volume free energy and the

surface free energy of the critical droplet.

There are many challenges in understanding metastability
of interacting particle systems.
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