Some tree-valued chains and their bridges

Steven N. Evans

August, 2021

Write (G_n, R_n) for the numbers of green and red balls added by time n in the classical Pólya urn:

- Start at time 0 with one green and one red ball in an urn.
- At each subsequent point in time, pick a ball uniformly at random from the urn and replace it along with one of the same color.

< <p>Image: A matrix

- Check that if we condition on the event $\{G_{n+1} = g, R_{n+1} = r\}$, then the order in which the g green balls and r red balls appear is uniformly distributed over the $\binom{g+r}{g} = \binom{g+r}{r}$ possibilities.
- In particular,

$$\mathbb{P}\{G_n = g - 1, R_n = r \mid G_{n+1} = g, R_{n+1} = r\} = \frac{g}{g + r}$$

and

$$\mathbb{P}\{G_n = g, R_n = r - 1 \mid G_{n+1} = g, R_{n+1} = r\} = \frac{r}{g+r}.$$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

- Let H_n (resp. T_n) be the number of heads (resp. tails) that appear in n independent tosses of a coin that comes up heads with probability p.
- Check that if we condition on the event $\{H_{n+1} = h, T_{n+1} = t\}$, then the order in which the *h* heads and *t* tails appear is uniform over the $\binom{h+t}{h} = \binom{h+t}{t}$ possibilities.
- In particular,

$$\mathbb{P}\{H_n = h - 1, T_n = t \mid H_{n+1} = h, T_{n+1} = t\} = \frac{h}{h+t}$$

and

$$\mathbb{P}\{H_n = h, T_n = t - 1 \mid H_{n+1} = h, T_{n+1} = t\} = \frac{t}{h+t}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ → 注 − のへ⊙

 Pólya's urn run backwards has the same transition dynamics as coin-tossing run backwards.

イロン イボン イヨン イヨン

Ξ.

- Let's start with trees that are rooted, binary (each vertex has 0, 1 or 2 children), and ordered (we distinguish between a left child and a right child even when there is only one child).
- We can identify such a tree as a subtree of the complete rooted binary tree.

э.

Complete rooted binary tree

- Denote by {0,1}* := □[∞]_{k=0} {0,1}^k the set of finite words drawn from the alphabet {0,1} (with the empty word Ø allowed).
- Write a word $(v_1, \ldots, v_\ell) \in \{0, 1\}^*$ more simply as $v_1 \ldots v_\ell$.
- Define a directed graph with vertex set $\{0,1\}^*$ by declaring that if $u = u_1 \dots u_k$ and $v = v_1 \dots v_\ell$ are two words, then (u, v) is a directed edge (that is, $u \to v$) if and only if $\ell = k + 1$ and $u_i = v_i$ for $i = 1, \dots, k$ (i.e. v is a child of u).
- This directed graph is the complete rooted binary tree (rooted at \emptyset).

- We can think of $\{0,1\}^{\infty}$ as the leaves of the complete rooted binary tree.
- Define a partial order on {0,1}* by declaring that u < v if u → w₁ → ··· → w_m → v for some words w₁,..., w_m (i.e. v is a descendant of u). This partial order extends to {0,1}* ⊔ {0,1}[∞].

イロト イポト イヨト イヨト

Finite rooted binary trees

- A finite rooted binary tree is a non-empty subset t of $\{0, 1\}^*$ with the property that if $v \in t$ and $u \in \{0, 1\}^*$ is such that $u \to v$, then $u \in t$.
- The vertex \emptyset belongs to any such tree t and is the root of t.

Storing an ordered listing of [n] as a finite rooted binary tree

A ►

-

æ

One way of building a random finite rooted binary tree

Figure: Finite rooted binary tree built from a realization of the uniform i.i.d.r.v. U_1, \ldots, U_9 with $U_8 < U_7 < U_9 < U_4 < U_1 < U_3 < U_5 < U_2 < U_6$.

If we do the construction of the previous slide for successive values of n and only keep track of the resulting the rooted binary trees (i.e. we throw away the labeling of vertices by [n]), then we get a Markov chain taking values in the space of finite rooted binary trees called the binary search tree process.

Binary search tree process transition probabilities

- The binary search tree process $\{T_n\}_{n\in\mathbb{N}}$ evolves as follows.
 - $\bullet T_1 = \emptyset$
 - Given T_n , a tree with n leaves, there are n + 1 words of the form $v = v_1 \dots v_\ell$ such that v is not a vertex of the tree T_n but the word $v_1 \dots v_{\ell-1}$ is.
 - Pick such a word uniformly at random and adjoin it to produce the tree T_{n+1} .

• For any $u = u_1 \dots u_m \in \{0, 1\}^*$ the sequences

$$#\{v \in T_n : u_1 \dots u_m 0 \leq v\}$$

and

$$#\{v \in T_n : u_1 \dots u_m 1 \leq v\}$$

evolve like time changes of the numbers of new green and red balls in a classical Pólya urn that starts with 1 green and 1 red ball.

The binary search tree process is thus an infinite hierarchical system of Pólya urns.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

- The digital search tree process $\{D_n\}_{n\in\mathbb{N}}$ is a Markov chain taking values in the space of finite binary trees that evolves as follows.
 - $\bullet D_1 = \emptyset$
 - Given D_n , a tree with n leaves, there are n+1 words of the form $v = v_1 \dots v_\ell$ such that v is not a vertex of the tree D_n but the word $v_1 \dots v_{\ell-1}$ is.
 - Pick such a word v with probability $2^{-\ell}=2^{-|v|}$ and adjoin it to produce the tree $D_{n+1}.$

(日) (同) (日) (日) (日) (日) (0) (0)

For any $u = u_1 \dots u_m \in \{0, 1\}^*$ the sequences

$$#\{v \in D_n : u_1 \dots u_m 0 \leq v\}$$

and

$$#\{v \in D_n : u_1 \dots u_m 1 \le v\}$$

evolve like time changes of the numbers of heads and tails in fair coin-tossing.

 The digital search tree process is thus an infinite hierarchical system of simple random walks.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

The binary search tree process run backwards has the same transition dynamics as the digital search tree process run backwards.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- Suppose that $z_1, \ldots, z_n \in \{0, 1\}^{\infty}$ are distinct infinite binary words.
- For each $i \in [n]$ we may construct a finite binary word y_i that is an initial segment of z_i such that y_1, \ldots, y_n are the distinct leaves of a finite rooted binary tree and y_1, \ldots, y_n are the minimal length words with this property.
- The resulting finite rooted binary tree $\mathbf{R}(z_1, \ldots, z_n)$ is called the radix sort tree defined by the infinite binary words z_1, \ldots, z_n .
- A depth first search of this tree visits the leaves in an order that coincides with the lexicographic order of the corresponding infinite binary words.

<ロ> (四) (四) (三) (三) (三)

∃ 990

- Denote by S the class of finite rooted binary trees that can arise as radix sort trees.
- A finite rooted binary tree s belongs to S if and only if $s = \{\emptyset\}$ or s has at least two leaves and for any leaf $u_1 \dots u_p \in s$ the sibling word $u_1 \dots u_{p-1} \bar{u}_p$ is also a vertex of s, where we set $\bar{0} := 1$ and $\bar{1} := 0$.
- Write S_n , $n \in \mathbb{N}$, for the elements of S with n leaves.
- In particular, S_1 contains only the trivial tree with the single vertex $\{\emptyset\}$.

э.

- Consider $\mathbf{t} \in \mathbb{S}_{n+1}$ and let $v = v_1 \dots v_m$ be a leaf of \mathbf{t} .
- Suppose first that the sibling $v_1 \dots v_{m-1} \overline{v}_m$ is not a leaf of t. Let $\kappa(\mathbf{t}, v) \in \mathbb{S}_n$ be the finite rooted binary tree with the same leaf set as t except that v has been removed.
- On the other hand, suppose that the sibling $v_1 \ldots v_{m-1} \bar{v}_m$ is also a leaf of t. There is a largest $\ell < m$ such that the siblings $v_1 \ldots v_\ell$ and $v_1 \ldots v_{\ell-1} \bar{v}_\ell$ are both vertices of t. In this case, let $\kappa(\mathbf{t}, v) \in \mathbb{S}_n$ be the tree with the same leaf set as t except that the leaf v and its sibling leaf $v_1 \ldots v_{m-1} \bar{v}_m$ have both been removed and replaced by the single leaf $v_1 \ldots v_\ell$.
- If t is the radix sort tree for the infinite binary inputs z_1, \ldots, z_{n+1} and y_{n+1} is the leaf of t corresponding to the input z_{n+1} , then $\kappa(\mathbf{t}, y_{n+1})$ is the radix sort tree for the inputs z_1, \ldots, z_n .

Example of pruning a leaf from a radix sort tree

Let Z₁, Z₂,... be i.i.d. {0,1}[∞]-valued random variables with common distribution some diffuse probability measure ν.

• Set
$${}^{\nu}R_n := \mathbf{R}(Z_1, \ldots, Z_n).$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

- The radix sort process $({}^{\nu}R_n)_{n\in\mathbb{N}}$ is Markov. The easiest way to see this is to show that the backwards in time process is Markov.
- For $s \in S_n$ and $t \in S_{n+1}$, the associated backwards transition probability is

$$\mathbb{P}\{{}^{\nu}R_n = \mathbf{s} \mid {}^{\nu}R_{n+1} = \mathbf{t}\} = \frac{1}{n+1}\{v : \mathbf{s} = \kappa(\mathbf{t}, v)\}.$$

- **That is**, $({}^{\nu}R_n)_{n\in\mathbb{N}}$ evolves backwards in time by picking leaves uniformly at random and pruning them.
- **NOTE**: The backwards transition probabilities of $({}^{\nu}R_n)_{n\in\mathbb{N}}$ are the same for all ν .

- The radix sort process $({}^{\nu}R_n)_{n \in \mathbb{N}}$ is a Markov chain with the following transition dynamics. Suppose that ${}^{\nu}R_n$ is the finite rooted binary tree s with leaves $\mathbf{L}(\mathbf{s})$. There are two cases to consider.
 - **Case I.** Suppose that $y = u_1 u_2 \dots u_{m-1} u_m$ is not a vertex of s and $u_1 u_2 \dots u_{m-1} \bar{u}_m$ is a (non-leaf) vertex of s. Let t be the finite rooted binary tree with leaves $\mathbf{L}(\mathbf{s}) \sqcup \{y\}$. Then

$$\mathbb{P}\{^{\nu}R_{n+1} = \mathbf{t} \mid {}^{\nu}R_n = \mathbf{s}\} = \nu(\tau(y)),$$

where $\tau(y) := \{ z \in \{0, 1\}^{\infty} : y < z \}.$

Case II. Suppose that $y \in \mathbf{L}(\mathbf{s})$ and y', y'' are siblings with y < y' and y < y''. Let t be the finite rooted binary tree with leaves $(\mathbf{L}(\mathbf{s}) \setminus \{y\}) \sqcup \{y', y''\}$. Then

$$\mathbb{P}\{{}^{\nu}R_{n+1} = \mathbf{t} \mid {}^{\nu}R_n = \mathbf{s}\} = 2\frac{\nu(\tau(y'))\nu(\tau(y''))}{\nu(\tau(y))}$$

- A finite rooted full binary tree is a finite rooted binary tree in which every vertex has 0 or 2 children.
- The number of such trees with n + 1 leaves (and hence 2n + 1 vertices) is the Catalan number $\frac{1}{n+1} \binom{2n}{n}$.
- Rémy's (1985) algorithm generates a sequence of random binary trees $(U_n)_{n\in\mathbb{N}}$ such that U_n is uniformly distributed on the set of finite rooted full binary trees with n+1 leaves.

- Start with U_1 being the unique finite rooted full binary tree $\aleph := \{ \emptyset, 0, 1 \}$ with 3 vertices.
- Supposing that U_n has been generated, pick a vertex v uniformly at random.
- Cut off the subtree rooted at v and set it aside.
- Attach a copy of the tree \aleph with 3 vertices to the end of the edge that previously led to v.
- Re-attach the subtree rooted at v uniformly at random to one of the two leaves in the copy of \aleph .
- Call the two new vertices that have been produced clones of v.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Example of one iteration of Rémy's algorithm

Figure: First step in an iteration of Rémy's algorithm: pick a vertex v uniformly at random.

<ロ> (四) (四) (三) (三) (三)

Ξ.

Example of one iteration of Rémy's algorithm - continued

Figure: Second step in an iteration of Rémy's algorithm: cut off the subtree rooted at v and attach a copy of \aleph to the end of the edge that previously led to v.

э

Example of one iteration of Rémy's algorithm - continued

Figure: Third step in an iteration of Rémy's algorithm: re-attach the subtree rooted at v to one of the two leaves of the copy of \aleph , and re-label the vertices appropriately. The solid circle is the new location of v and the open circles are the clones of v.

э

- An embedding of a finite rooted full binary tree s into a finite rooted full binary tree t is a map from the vertex set of s into the vertex set of t such that the following hold.
 - The image of a leaf of s is a leaf of t.
 - If u, v are vertices of s such that v is below and to the left (resp. right) of u, then the image of v in t is below and to the left (resp. right) of the image of u in t.
- Write $N(\mathbf{s}, \mathbf{t})$ for the number of embeddings of \mathbf{s} into \mathbf{t} .

《曰》 《圖》 《臣》 《臣》 三日

Digression: Embeddings - continued

Figure: All the embeddings of the unique finite rooted full binary tree $s = \aleph$ with 3 vertices into a particular finite rooted full binary tree t with 7 vertices.

(日) (部) (目) (日)

æ

Note that an embedding of s into t is uniquely determined by the images of the leaves of s, because if x and y are vertices of s, then the image of the most recent common ancestor of x and y in s must be the most recent common ancestor in t of the images of x and y.

Suppose that s and t are two finite rooted full binary trees with, respectively, m + 1 and m + n + 1 leaves. Then, the probability that the Rémy chain transitions from s to t in n steps is

$$p^{n}(\mathbf{s}, \mathbf{t}) = n! \frac{1}{(2m+1) \times (2m+3) \times \dots \times (2(m+n)-1)} \frac{1}{2^{n}} N(\mathbf{s}, \mathbf{t}),$$

where $N(\mathbf{s}, \mathbf{t})$ is the number of ways of embedding \mathbf{s} into \mathbf{t} .

What are the multi-step transition probabilities of Rémy's chain?

- Condition on *T_m*.
- Say that a vertex of T_{m+n} is a clonal descendant of a vertex $v \in T_m$ if it is v itself, a clone of v, a clone-of-a-clone of v, etc.
- We can decompose T_{m+n} into connected pieces according to clonal descent from the vertices of T_m .

Figure: Decomposition of T_{m+n} via clonal descent from the vertices of T_m .

- The numbers of clonal descendants of the 2m + 1 vertices is the result of n steps in a Polya urn that starts with 2m + 1 balls of different colors and at each stage a ball is chosen uniformly at random and replaced along with two balls of the same color.
- Conditional on the numbers of clonal descendants, the binary trees of clonal descendants are independent and uniformly distributed.
- Conditional on the trees of clonal descendants, the ancestors from T_m are located at independently and uniformly chosen leaves of their respective trees of clonal descendants.
Note that if s, t are finite rooted full binary trees with n + 1 and n + 2 leaves, respectively, then, using the expressions for the forward transition probabilities and the Catalan numbers,

$$\mathbb{P}\{T_n = \mathbf{s} \mid T_{n+1} = \mathbf{t}\} = \frac{1}{n+2}N(\mathbf{s}, \mathbf{t}).$$

- The Rémy chain evolves one step backward in time as follows.
 - Pick a leaf uniformly at random.
 - Delete the chosen leaf and its sibling (which may or may not be a leaf).
 - If the sibling is not a leaf, then close up the resulting gap by attaching the subtree below the sibling to the parent of the chosen leaf and the sibling.

Backward dynamics for the Rémy chain - continued

Figure: Pick a leaf uniformly at random.

æ

Backward dynamics for the Rémy chain - continued

Figure: Delete the chosen leaf and its sibling.

< 注→

< ∃⇒

< □ > < A >

э

Backward dynamics for the Rémy chain - continued

Figure: Close up the gap if there is one.

æ

イロト イポト イヨト イヨト

- Recall that a depth first search of a radix sort tree visits the leaves in an order that coincides with the lexicographic order of the corresponding infinite binary words.
- The radix sort tree stores more information than is necessary for the purpose of sorting the infinite binary words into lexicographic order.
- More precisely, if one deletes the vertices with a single child in the radix sort tree and closes up the gaps, then a depth first search of the resulting PATRICIA tree still visits the leaves in an order that coincides with the lexicographic order of the corresponding infinite words.
- PATRICIA is an acronym for "Practical Algorithm To Retrieve Information Coded In Alphanumeric".

・ロト ・同ト ・ヨト ・ヨト

Note that in a PATRICIA tree each non-leaf vertex of the tree has two children; that is, if the finite binary word v = v₁...v_m is a vertex of the tree that is not a leaf, then both of the words v₁...v_m0 and v₁...v_m1 are also vertices of the tree.

э.

Example of a PATRICIA tree

< 三→

∃ 990

- Denote by S
 the set of finite rooted binary trees which can arise as PATRICIA trees.
- A finite rooted binary tree belongs to S if and only if each vertex has 2 or 0 children.
- Write $\overline{\mathbb{S}}_n$, $n \in \mathbb{N}$, for the elements of $\overline{\mathbb{S}}$ with n leaves.
- In particular, $\overline{\mathbb{S}}_1$ contains only the trivial tree with the single vertex $\{\emptyset\}$.

- \blacksquare Recall that $\mathbb S$ is the class of finite rooted binary trees that can arise as radix sort trees.
- The PATRICIA contraction is the map $\Phi : \mathbb{S} \to \overline{\mathbb{S}}$ that deletes vertices with a single child and closes up the gaps.
- The PATRICIA contraction maps \mathbb{S}_n to $\overline{\mathbb{S}}_n$ for all $n \in \mathbb{N}$.

э.

- Consider $\bar{\mathbf{t}} \in \bar{\mathbb{S}}_{n+1}$ and let $v = v_1 \dots v_m$ be a leaf of \mathbf{t} .
- The finite rooted binary tree $\bar{\kappa}(\bar{t}, v) \in \bar{S}_n$ is obtained by removing $v = v_1 \dots v_m$ and $v_1 \dots v_{m-1} \bar{v}_m$ and closing up the gap if there is one (this will be the case if the sibling $v_1 \dots v_{m-1} \bar{v}_m$ is not a leaf).
- If $\overline{\mathbf{t}}$ is the PATRICIA tree for the infinite binary inputs z_1, \ldots, z_{n+1} and y_{n+1} is the leaf of \mathbf{t} corresponding to the input z_{n+1} , then $\overline{\kappa}(\overline{\mathbf{t}}, y_{n+1})$ is the PATRICIA tree for the inputs z_1, \ldots, z_n .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Example of pruning a leaf from a PATRICIA tree

- The PATRICIA process $({}^{\nu}\bar{R}_n)_{n\in\mathbb{N}}$ is obtained by taking ${}^{\nu}\bar{R}_n$, $n\in\mathbb{N}$, to be the PATRICIA tree for the i.i.d. inputs Z_1,\ldots,Z_n with common distribution ν
- Note that ${}^{\nu}\bar{R}_n = \Phi({}^{\nu}R_n)$, $n \in \mathbb{N}$, where we recall that Φ is the PATRICIA contraction.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Set
$$\gamma := \pi^{\otimes \infty}$$
, where $\pi(\{0\}) = \pi(\{1\}) = \frac{1}{2}$; that is, γ is fair coin-tossing measure on $\{0, 1\}^{\infty}$.

• Write
$$R_n := {}^{\gamma}R_n$$
 and $\bar{R}_n := {}^{\gamma}\bar{R}_n$.

◆□ > ◆□ > ◆豆 > ◆豆 >

Ξ.

• A PATRICIA process $({}^{\nu}\bar{R}_n)_{n\in\mathbb{N}}$ is Markov.

• For $\bar{s} \in \bar{\mathbb{S}}_n$ and $\bar{t} \in \bar{\mathbb{S}}_{n+1}$, the associated backward transition probability is

$$\mathbb{P}\{{}^{\nu}\bar{R}_n = \bar{\mathbf{s}} \mid {}^{\nu}\bar{R}_{n+1} = \bar{\mathbf{t}}\} = \frac{1}{n+1} \#\{v : \bar{\mathbf{s}} = \bar{\kappa}(\bar{\mathbf{t}}, v)\}.$$

- That is, $({}^{\nu}\bar{R}_n)_{n\in\mathbb{N}}$ evolves backward in time by picking leaves uniformly at random and pruning them.
- NOTE: The backward transition probabilities of (^ν R
 n){n∈N} are the same for all ν.

- The Rémy chain starts with the finite rooted full binary tree $\aleph = \{ \emptyset, 0, 1 \}$.
- A PATRICIA process starts with finite rooted full binary tree $\{\emptyset\}$.
- However, both processes have the same backward transition probabilities.

- We have a Markov chain $(X_n)_{n \in \mathbb{N}_0}$ with a countable state space E.
- The state space is partitioned into disjoint pieces $E_0 \sqcup E_1 \sqcup E_2 \sqcup \ldots$, where $E_0 = \{e\}$ for some distinguished state e.
- The transition probabilities satisfy p(i, j) = 0 unless $i \in E_n$ and $j \in E_{n+1}$ for some $n \in \mathbb{N}_0$.
- Consequently, if $X_0 = e$, then $X_n \in E_n$ for all $n \in \mathbb{N}_0$.

- A bridge for the type of Markov chain X we are considering is a Markov chain Y with:
 - The same state space as X.
 - Initial state $Y_0 = e$.
 - The same backward transition probabilities as X.

イロン イロン イヨン イヨン

WHAT ARE ALL THE BRIDGES FOR A GIVEN MARKOV CHAIN?

・ロト ・四ト ・ヨト ・ヨト

Ξ.

- A mixture of two bridges is a bridge. So what we really want to know is:
- WHAT ARE ALL THE EXTREMAL BRIDGES FOR A GIVEN MARKOV CHAIN?
- FACT: A bridge is extremal if and only if it has almost surely trivial tail σ -field.

イロト イポト イヨト イヨト

- Recall the simplest radix sort chain $R := {}^{\gamma}R$, where γ is fair coin-tossing measure.
- We have observed that each chain of the form ${}^{\nu}R$ is a bridge for R.
- We will show that these bridges are extremal and they are the only extremal bridges for *R*.

イロト イポト イヨト イヨト

- We have seen that the PATRICIA chains ${}^{\nu}\bar{R}$ are bridges for the Rémy chain T or, equivalently the simplest PATRICIA chain \bar{R} .
- The above result for the simplest radix sort chain R suggest that all the extremal bridges for T (equivalently, \overline{R}) are of the form ${}^{\nu}\overline{R}$.

Figure: The value at time n of an extremal Rémy bridge. The tree consists of leaves hanging off a single spine that moves to the left or right according to successive tosses of a fair coin. It is clear that this chain is not of the form ${}^{\nu}\bar{R}$ for any ν .

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

- What are the extremal bridges for the Rémy chain T (equivalently, the simplest PATRICIA process \overline{R})?
- Write $(T_n^{\infty})_{n \in \mathbb{N}}$ for an extremal Rémy bridge.

By Kolmogorov's extension theorem, there is a Markov process $(\tilde{T}_n^{\infty})_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ the random element \tilde{T}_n^{∞} is a leaf-labeled binary tree with n+1 leaves labeled by [n+1] and the following hold.

- The binary tree obtained by removing the labels of \tilde{T}_n^∞ is T_n^∞ .
- For every $n \in \mathbb{N}$, the conditional distribution of \tilde{T}_n^{∞} given T_n^{∞} is uniform over the (n + 1)! possible labelings of T_n^{∞} .
- In going backward from time n+1 to time n, \tilde{T}_{n+1}^{∞} is transformed into \tilde{T}_{n}^{∞} as follows:
 - The leaf labeled n + 2 is deleted, along with its sibling.
 - If the sibling of the leaf labeled n+2 is also a leaf, then the common parent (which is now a leaf) is assigned the sibling's label.

Most recent common ancestors

- We want to use the labeling and a projective construction to build an infinite binary-tree-like structure for which N plays the role of the leaves.
- If $i, j \in \mathbb{N}$ are the labels of two leaves T_n^{∞} that are represented as the words $u_1 \dots u_k$ and $v_1 \dots v_\ell$ in $\{0, 1\}^*$, then set
 - $[i, j]_n := u_1 \dots u_m = v_1 \dots v_m$, where $m := \max\{h : u_h = v_h\}$.
- That is, $[i, j]_n$ is the most recent common ancestor in T_n^∞ of the leaves labeled i and j.

- Define an equivalence relation \equiv on the Cartesian product $\mathbb{N} \times \mathbb{N}$ by declaring that $(i', j') \equiv (i'', j'')$ if and only if $[i', j']_n = [i'', j'']_n$ for some (and hence all) n such that $i', j', i'', j'' \in [n + 1]$.
- Write $\langle i, j \rangle$ for the equivalence class of the pair (i, j).
- Think of (*i*, *j*) as the being the most recent common ancestor of the leaves *i* and *j* and of such points being interior vertices of a tree-like object.

(日) (同) (日) (日) (日) (日) (0) (0)

- Define a partial order $<_L$ on the set of equivalence classes by declaring for $(i', j'), (i'', j'') \in \mathbb{N} \times \mathbb{N}$ that $\langle i', j' \rangle <_L \langle i'', j'' \rangle$ if and only if for some (and hence all) n such that $i', j', i'', j'' \in [n + 1]$ we have $[i', j']_n = u_1 \dots u_k$ and $[i'', j'']_n = u_1 \dots u_k 0v_1 \dots v_\ell$ for some $u_1, \dots, u_k, v_1, \dots, v_\ell \in \{0, 1\}$.
- Interpret the ordering $\langle i', j' \rangle <_L \langle i'', j'' \rangle$ as the "vertex" $\langle i'', j'' \rangle$ being below and to the left of the "vertex" $\langle i', j' \rangle$.

イロト イポト イヨト イヨト 三日

- Similarly, define another partial order $<_R$ by declaring that $\langle i', j' \rangle <_R \langle i'', j'' \rangle$ if and only if for some (and hence all) n such that $i', j', i'', j'' \in [n+1]$ we have $[i', j']_n = u_1 \dots u_k$ and $[i'', j'']_n = u_1 \dots u_k 1v_1 \dots v_\ell$ for some $u_1, \dots, u_k, v_1, \dots, v_\ell \in \{0, 1\}$.
- Interpret the ordering $\langle i', j' \rangle <_R \langle i'', j'' \rangle$ as the "vertex" $\langle i'', j'' \rangle$ being below and to the right of the "vertex" $\langle i', j' \rangle$.

- Define a third partial order < on the set of equivalence classes of $\mathbb{N} \times \mathbb{N}$ by declaring that $\langle i', j' \rangle < \langle i'', j'' \rangle$ if either $\langle i', j' \rangle <_L \langle i'', j'' \rangle$ or $\langle i', j'' \rangle <_R \langle i'', j'' \rangle$.
- Interpret the ordering $\langle i', j' \rangle < \langle i'', j'' \rangle$ as the "vertex" $\langle i'', j'' \rangle$ being below the "vertex" $\langle i', j' \rangle$.

(日) (同) (日) (日) (日) (日) (0) (0)

Properties of the equivalence relation and partial orders

The equivalence relation \equiv and the partial orders $<_L, <_R$, and < have the following properties.

(A) For
$$i, j \in \mathbb{N}$$
, $(i, j) \equiv (j, i)$.

- (B) For distinct $i, j \in \mathbb{N}$, either $\langle i, j \rangle <_L \langle i, i \rangle$ and $\langle i, j \rangle <_R \langle j, j \rangle$, or $\langle i, j \rangle <_R \langle i, i \rangle$ and $\langle i, j \rangle <_L \langle j, j \rangle$.
- (C) "Triplet property" For distinct i, j, k, exactly one of

$$\left\langle i,j\right\rangle =\left\langle i,k\right\rangle <\left\langle j,k\right\rangle$$

$$\left< j,k \right> = \left< j,i \right> < \left< k,i \right>$$
 or

$$\label{eq:k,i} \begin{split} \langle k,i\rangle &= \langle k,j\rangle < \langle i,j\rangle \\ \text{is valid}. \end{split}$$

(D) For $i, j, k, \ell \in \mathbb{N}$, at most one of the relations $\langle i, j \rangle <_L \langle k, \ell \rangle$ and $\langle i, j \rangle <_R \langle k, \ell \rangle$ can hold and $\langle i, j \rangle < \langle k, \ell \rangle$ if and only if either $\langle i, j \rangle <_L \langle k, \ell \rangle$ or $\langle i, j \rangle <_R \langle k, \ell \rangle$.

(E) Fix $f, g, h, i, j, k \in \mathbb{N}$. If $\langle f, g \rangle <_L \langle h, i \rangle < \langle j, k \rangle$, then $\langle f, g \rangle <_L \langle j, k \rangle$. Similarly, if $\langle f, g \rangle <_R \langle h, i \rangle < \langle j, k \rangle$, then $\langle f, g \rangle <_R \langle j, k \rangle$.

- Suppose that \mathcal{N} is a set, \equiv is an equivalence relation on \mathcal{N} , and each of $<_L, <_R, <$ is a partial order on the resulting collection of equivalence classes. We say that $\mathbf{D} = (\mathcal{N}, \equiv, \langle \cdot, \cdot \rangle, <_L, <_R, <)$ is a didendritic system if the properties (A)-(E) hold with \mathbb{N} replaced by \mathcal{N} .
- A didendritic system with a finite label set N is just a rooted full binary tree with its leaves labeled by N.

・ロト ・ 同ト ・ ヨト ・ ヨト

Didendritic systems and sequences of leaf-labeled finite rooted full binary trees

- Suppose that $(\tilde{t}_n)_{n \in \mathbb{N}}$ is a sequence of finite rooted full binary trees such that the leaves of \tilde{t}_n , $n \in \mathbb{N}$, are labeled by [n + 1]. Assume that this sequence is is consistent in the sense that \tilde{t}_n is produced from \tilde{t}_{n+1} by:
 - deleting leaf labeled n + 2 along with its sibling;
 - if the sibling was also a leaf, assigning its label to the common parent (which is now a leaf).

Then there is a corresponding didendritic system constructed as above for $(\tilde{T}_n^\infty)_{n\in\mathbb{N}}.$

■ Moreover, any didendritic system on \mathbb{N} arises in this way for a unique consistent sequence $(\tilde{t}_n)_{n \in \mathbb{N}}$.

・ロト ・日本・ ・ 日本・

- Given a didendritic system $\mathbf{D} = (\mathbb{N}, \equiv, \langle \cdot, \cdot \rangle, <_L, <_R, <)$ and a permutation σ of \mathbb{N} , the didendritic system $\mathbf{D}^{\sigma} = (\equiv^{\sigma}, \langle \cdot, \cdot \rangle^{\sigma}, <_L^{\sigma}, <_R^{\sigma})$ is defined by
 - $\bullet \ (i',j') \equiv^{\sigma} (i'',j'') \text{ if and only if } (\sigma(i'),\sigma(j')) \equiv (\sigma(i''),\sigma(j'')),$
 - (i, j)^{σ} is the equivalence class of the pair (i, j) for the equivalence relation \equiv^{σ} ,

 - $= \langle h, i \rangle^{\sigma} <_{R}^{\sigma} \langle j, k \rangle^{\sigma} \text{ if and only if } \langle \sigma(h), \sigma(i) \rangle <_{R} \langle \sigma(j), \sigma(k) \rangle$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

A random didendritic system D = (N, ≡, ⟨·, ·⟩, <_L, <_R, <) is exchangeable if for each permutation σ of N such that σ(i) = i for all but finitely many i ∈ N the random didendritic system D^σ has the same distribution as D.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ
- The random didendritic system corresponding to the labeled version of a Rémy bridge is exchangeable.
- Conversely, the sequence of random leaf-labeled finite rooted full binary trees produced from an exchangeable random didendritic system is the labeled version of a Rémy bridge.

An exchangeable random didendritic system D is ergodic if

 $\mathbb{P}(\{\mathbf{D} \in A\} \triangle \{\mathbf{D}^{\sigma} \in A\}) = 0$

for some measurable set A for all permutations σ of \mathbb{N} with $\sigma(i) = i$ for all but finitely many $i \in \mathbb{N}$ implies that

$$\mathbb{P}\{\mathbf{D} \in A\} \in \{0, 1\}.$$

- Any exchangeable random didendritic system is a mixture of ergodic exchangeable random didendritic systems.
- The tail σ-field of a Rémy bridge is almost surely trivial (equivalently, the Rémy bridge is extremal) if and only if the corresponding exchangeable random didendritic system is ergodic.

 Consider an extremal Rémy bridge and the corresponding ergodic exchangeable random didendritic system. By de Finetti and the strong law of large numbers,

$$d(i,j) := \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^n \mathbb{1}\{\langle i,j \rangle \leqslant p\}$$

exists for each pair $i, j \in \mathbb{N}$.

- Almost surely, d is an ultrametric on N. That is, almost surely the following hold.
 - For all $i, j \in \mathbb{N}$, $d(i, j) \ge 0$, and d(i, j) = 0 if and only if i = j.
 - For all $i, j \in \mathbb{N}$, d(i, j) = d(j, i).
 - For all $i, j, k \in \mathbb{N}$, $d(i, k) \leq d(i, j) \lor d(j, k)$.
- A fortiori, d is almost surely a metric on \mathbb{N} .

- A segment in a metric space (X, d) is the image of an isometry $\alpha : [a, b] \to X$. The endpoints of the segment are $\alpha(a)$ and $\alpha(b)$.
- A metric space (X, d) is geodesic if for all $x, y \in X$ there is a segment in X with endpoints $\{x, y\}$.
- An \mathbb{R} -tree is a metric space (X, d) with the following properties.
 - The space (X, d) is geodesic.
 - If two segments of (X, d) intersect in a single point, which is an endpoint of both, then their union is a segment.
- **Fact:** If (X, d) is an \mathbb{R} -tree, then for all $x, y \in X$ there is a unique segment in X with endpoints $\{x, y\}$.

- The most recent common ancestor of $\langle h, i \rangle$ and $\langle j, k \rangle$ is of the form $\langle \ell, m \rangle$, where $\ell \in \{h, i\}$ and $m \in \{j, k\}$.
- In terms of the metric d, ℓ and m are any such pair for which $d(\ell,m) = d(h,j) \lor d(h,k) \lor d(i,j) \lor d(i,k)$.

We therefore extend the metric by setting

$$\begin{split} d(\langle h,i\rangle,\langle j,k\rangle) &= \frac{1}{2} ([d(\ell,m) - d(h,i)] + [d(\ell,m) - d(j,k)]) \\ &= d(h,j) \lor d(h,k) \lor d(i,j) \lor d(i,k) - \frac{1}{2} (d(h,i) + d(j,k)). \end{split}$$

(日) (同) (日) (日) (日) (日) (0) (0)

Constructing an \mathbb{R} -tree – continued

- This extension is indeed a metric and the four point condition holds; that is for equivalence classes w, x, y, z at least one of the following sets of conditions holds
 - $\bullet \ d(w,x)+d(y,z)\leqslant d(w,y)+d(x,z)=d(w,z)+d(x,y),$

$$d(w,z) + d(x,y) \leq d(w,x) + d(y,z) = d(w,y) + d(x,z),$$

 $d(w,y) + d(x,z) \leq d(w,z) + d(x,y) = d(w,x) + d(y,z).$

- Because the four point condition holds, we can embed $\{\langle i, j \rangle : i, j \in \mathbb{N}\}$ in a distance-preserving manner into a minimal, complete \mathbb{R} -tree \mathbb{T} with a root ρ in such a way that $\langle i, j \rangle < \langle k, \ell \rangle$ if and only if $\langle i, j \rangle$ is on the geodesic segment from ρ to $\langle k, \ell \rangle$.
- That is, the natural partial order on (\mathbf{T}, ρ) extends the partial order < on the embedded set $\{\langle i, j \rangle : i, j \in \mathbb{N}\}$.

э.

Core and projections

- The core S of T is the smallest closed subtree containing $\{\langle i, j \rangle : i, j \in \mathbb{N}, i \neq j\}.$
- The projection $\Pi(x)$ of $x \in \mathbf{T}$ onto \mathbf{S} is the unique point in \mathbf{S} closest to x.

- Put $\xi_k := \Pi(k) = \Pi(\langle k, k \rangle) \in \mathbf{S}.$
- The equivalence relation \equiv and the partial order < can be reconstructed from $(\xi_k)_{k\in\mathbb{N}}$.
- By de Finetti and ergodicity, $(\xi_k)_{k \in \mathbb{N}}$ is an i.i.d. sequence with common distribution μ , where μ is a diffuse probability measure on **S**.

Any didendritic system $(\equiv, \langle \cdot, \cdot \rangle, <_L, <_R)$ is uniquely determined by the equivalence relation \equiv , the partial order <, and a determination for each pair of distinct labeled leaves $i, j \in \mathbb{N}$ whether

$$\begin{split} \langle i,j\rangle <_L i & \text{and} & \langle i,j\rangle <_R j \\ & \text{or} \\ \langle i,j\rangle <_L j & \text{and} & \langle i,j\rangle <_R i. \end{split}$$

- For an ergodic exchangeable random didendritic system, define J_{ij} , $i, j \in \mathbb{N}, i \neq j$, by $J_{ij} = 0$ (resp. $J_{ij} = 1$) if the former (resp. latter) alternative holds.
- The array J is jointly exchangeable and ergodic.

◆□▶ ◆□▶ ◆注▶ ◆注▶ → 注 − のへ⊙

By the Aldous-Hoover-Kallenberg theory of jointly exchangeable arrays, we may suppose that on some extension of our underlying probability space there exist i.i.d. random variables $(U_i)_{i\in\mathbb{N}}$, and $(U_{ij})_{i,j\in\mathbb{N}}$, i<j that are uniform on [0,1] and a function F such that

$$J_{ij} = F(\xi_i, U_i, \xi_j, U_j, U_{ij}),$$

where
$$U_{ij} = U_{ji}$$
 for $i > j$.

With some extra work, we can show that

$$J_{ij} = G(\xi_i, U_i, \xi_j, U_j)$$

for a suitable function G.

< 日 > < 同 > < 三 > < 三 > < 三 > <

- Any Rémy bridge is a mixture of extremal Rémy bridges (i.e. ones with trivial tail σ-fields).
- There is a bijection between extremal Rémy bridges and ergodic exchangeable random didendritic systems.
- Any ergodic exchangeable random didendritic system is determined by
 - **a** complete, separable \mathbb{R} -tree **S**,
 - **a** distinguished root $\rho \in \mathbf{S}$,
 - **a** diffuse sampling probability measure μ on S,
 - a "left-vs-right" function $G: \mathbf{S} \times [0,1] \times \mathbf{S} \times [0,1] \to \{0,1\}$.
- The ensemble (S, ρ, μ, G) has to satisfy certain obvious consistency conditions (e.g. for μ^{⊗3}-a.e. (x, y, z) ∈ S³, two of the three geodesic segments [ρ, x] ∩ [ρ, y], [ρ, x] ∩ [ρ, z], [ρ, y] ∩ [ρ, z] are equal and these two are strictly contained in the third).
- Conversely, any ensemble (S, ρ, μ, G) that satisfies the consistency conditions gives rise to an ergodic exchangeable random didendritic system and hence to an extremal Rémy bridge.

Example

Recall the Rémy bridge whose value at time n is a finite rooted full binary tree consisting of n + 1 vertices along a single spinal path that has n leaves coming off to the left of right according to tosses of a fair coin. Here we may take

- the complete separable ℝ-tree S to be [0, 1] equipped with the usual metric,
- the root ρ to be the point $0 \in [0, 1]$,
- the diffuse sampling probability measure μ to be Lebesgue measure on [0, 1],
- the "left-vs-right" function $G: \mathbf{S} \times [0,1] \times \mathbf{S} \times [0,1] \to \{0,1\}$ to be given by

$$G(x, u, y, v) = \begin{cases} 1, & \text{if } x < y \text{ and } u < \frac{1}{2}, \\ 0, & \text{if } x < y \text{ and } u > \frac{1}{2}, \\ 1, & \text{if } y < x \text{ and } v < \frac{1}{2}, \\ 0, & \text{if } y < x \text{ and } v > \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

Why are things much simpler for the radix sort chain?

This seems to be a subtle point that depends on monotonicity that is present in the radix sort chain which is not present in the Rémy/PATRICIA chain.

- Suppose that $(R_n^{\infty})_{n \in \mathbb{N}}$ is a radix sort bridge.
- By Kolmogorov's extension theorem we may suppose that there is a Markov process $(\tilde{R}_n^\infty)_{n\in\mathbb{N}}$ such that for each $n\in\mathbb{N}$ the random element \tilde{R}_n^∞ is a leaf-labeled rooted binary tree with n leaves labeled by [n] and the following hold.
 - The rooted binary tree obtained by removing the labels of $ilde{R}_n^\infty$ is R_n^∞ .
 - For every $n \in \mathbb{N}$, the conditional distribution of \tilde{R}_n^{∞} given R_n^{∞} is uniform over the n! possible labelings of R_n^{∞} .
 - In going backward from time n + 1 to time n, \tilde{R}_{n+1}^{∞} is transformed into \tilde{R}_{n}^{∞} by pruning the leaf labeled n + 1.

- Given $i \in [n]$, let $\langle i \rangle_n \in \{0,1\}^*$ be the leaf of R_n^{∞} labeled i in \tilde{R}_n^{∞} .
- Observe that $\langle i \rangle_i \leq \langle i \rangle_{i+1} \leq \dots$ and so $\langle i \rangle_{\infty} = \lim_{n \to \infty} \langle i \rangle_n \in \{0, 1\}^* \sqcup \{0, 1\}^{\infty}$ is well-defined.
- For distinct $i, j \in \mathbb{N}$, the most recent common ancestor $\langle i \rangle_n \land \langle j \rangle_n$ is the same for all $n \ge i \land j$ and coincides with $\langle i \rangle_{\infty} \land \langle j \rangle_{\infty}$.

(日) (同) (日) (日) (日) (日) (0) (0)

CLAIM: The sequence $(\langle i \rangle_{\infty})_{i \in \mathbb{N}}$ is exchangeable.

PROOF: It is clear by construction that $(\langle i \rangle_n)_{i \in [n]}$ is (finitely) exchangeable and the claim follows upon taking limits as $n \to \infty$.

э.

CLAIM: The tail σ -field of $(R_n^{\infty})_{n\in\mathbb{N}}$ is \mathbb{P} -a.s. trivial if and only if $(\langle i \rangle_{\infty})_{i\in\mathbb{N}}$ is an independent identically distributed sequence.

PROOF: The bijective correspondence between the distributions of the bridges $(R_n^\infty)_{n\in\mathbb{N}}$ and the distributions of their labeled versions $(\tilde{R}_n^\infty)_{n\in\mathbb{N}}$ is compatible with convex combinations, and hence preserves extremality.

Therefore the tail σ -field of the bridge $(R_n^{\infty})_{n\in\mathbb{N}}$ is \mathbb{P} -a.s. trivial if and only if the exchangeable sequence $(\langle i \rangle_{\infty})_{i\in\mathbb{N}}$ is ergodic.

A well-known consequence of de Finetti's theorem is that an exchangeable sequence is ergodic if and only if it is independent and identically distributed.

CLAIM: If $(\langle i \rangle_{\infty})_{i \in \mathbb{N}}$ is independent and identically distributed with common distribution ν , then ν is concentrated on $\{0, 1\}^{\infty}$ and diffuse.

PROOF: For any $u \in \{0,1\}^*$, the sequence $(\mathbb{1}\{u = \langle k \rangle_{\infty}\})_{k \in \mathbb{N}}$ is independent and identically distributed, and hence $\#\{k \in \mathbb{N} : u = \langle k \rangle_{\infty}\} = 0$ P-a.s. or $\#\{k \in \mathbb{N} : u = \langle k \rangle_{\infty}\} = \infty$ P-a.s. Now, if $\mathbb{P}\{\langle i \rangle_{\infty} \in \{0,1\}^*\} > 0$ there would be a $u \in \{0,1\}^*$ such that with positive probability $\langle i \rangle_n = \langle i \rangle_{\infty} = u$ for all n sufficiently large. Then, on the event $\{\langle i \rangle_{\infty} = u\}$ we would have $\#\{k \in \mathbb{N} : \langle k \rangle_{\infty} = u\} = 1$, because $\langle j \rangle_{\infty} \neq \langle i \rangle_{\infty}$ for $j \neq i$ when $\langle i \rangle_{\infty} \in \{0,1\}^*$. This shows that $\mathbb{P}\{\langle i \rangle_{\infty} \in \{0,1\}^*\} = 0$.

We therefore have that $(\langle k \rangle_{\infty})_{k \in \mathbb{N}}$ is an independent identically distributed sequence of $\{0,1\}^{\infty}$ -valued random variables. Because $\langle i \rangle_{\infty} \wedge \langle j \rangle_{\infty} = \langle i \rangle_n \wedge \langle j \rangle_n \in \{0,1\}^*$ for all $n \ge i \lor j$ P-a.s. when $i \ne j$, it follows that $\langle i \rangle_{\infty} \ne \langle j \rangle_{\infty}$ P-a.s. for $i \ne j$ and the common distribution of $(\langle k \rangle_{\infty})_{k \in \mathbb{N}}$ is diffuse.

CLAIM: The tail σ -field of $(R_n^{\infty})_{n \in \mathbb{N}}$ is \mathbb{P} -a.s. trivial if and only if $(R_n^{\infty})_{n \in \mathbb{N}}$ has the same distribution as $({}^{\nu}R_n)_{n \in \mathbb{N}}$ for some diffuse probability measure ν on $\{0,1\}^{\infty}$.

PROOF: We have already seen that when ν is a diffuse probability measure on $\{0,1\}^{\infty}$ the process $({}^{\nu}R_n)_{n\in\mathbb{N}}$ is a bridge which, by the Hewitt-Savage zero-one law, has a trivial tail σ -field.

< 日 > < 同 > < 三 > < 三 > < 三 > <

Conversely, suppose that the bridge $(R_n^{\infty})_{n\in\mathbb{N}}$ has a trivial tail σ -field. Let ν be the common diffuse distribution of the independent, identically distributed sequence of $\{0,1\}^{\infty}$ -valued random variables $(\langle i \rangle_{\infty})_{i\in\mathbb{N}}$. It is clear that $R_n^{\infty} = \mathbf{R}(\langle 1 \rangle_{\infty}, \ldots, \langle n \rangle_{\infty}), n \in \mathbb{N}$, and so $(R_n^{\infty})_{n\in\mathbb{N}}$ has the same distribution as $({}^{\nu}R_n)_{n\in\mathbb{N}}$.

イロン 不得 とくほう 不良 とうせい

[]

- Steven N. Evans, Rudolf Grübel, and Anton Wakolbinger, *Trickle-down* processes and their boundaries, Electron. J. Probab. **17** (2012), no. 1, 58. MR 2869248
- ______, Doob-Martin boundary of Rémy's tree growth chain, Ann. Probab. 45 (2017), no. 1, 225–277. MR 3601650
- Steven N. Evans and Anton Wakolbinger, Radix sort trees in the large, Electron. Commun. Probab. 22 (2017), Paper No. 68, 13. MR 3734107
- Patricia bridges, Genealogies of Interacting Particle Systems (M. Birkner, R. Sun, and J. Swart, eds.), Lecture Note Series, vol. 38, Institute for Mathematical Sciences, National University of Singapore, World Scientific, 2020, pp. 233–267.